
Syntactic Completions with Material Obligations

by

David Moon

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2025

Doctoral Committee:

Assistant Professor Cyrus Omar, Chair
Assistant Professor Max S. New
Associate Professor Steve Oney
Professor Laurence Tratt, King’s College London

David Moon

dmoo@umich.edu

ORCID iD: 0000-0002-1081-2235

© David Moon 2025

ACKNOWLEDGEMENTS

I started working with Cyrus in 2018, when he was still a postdoc at the University of Chicago
and I starting my PhD at CU Boulder. It was a stormy, tumultuous, exhilarating year. I saw the
best clouds of my life, and I decided to leave Boulder and join Cyrus wherever he got a job. Much
thanks to Ben Shapiro for shepherdingmy transition from Boulder toMichigan. Cyrus, thank you
for giving me the chance to work on ambitious problems and the guidance and space to develop
ambitious solutions. It has been a deeply fulfilling pleasure.

Andrew Blinn joined me at Michigan in 2020, and we lived and breathed structure editing
together for the next five years. Living and working with him was a formative and enriching
experience. This work owesmuch to his influence. I am grateful also to havemet andworkedwith
the manymembers of the Future of Programming lab—Eric Griffis, Hannah Potter, Yongwei Yuan,
Milan Lustig, Matthew Keenan, Thomas Porter, Alexander Bandukwala, Gregory Croisdale, and
more—whose insights and enthusiasm have been a steady source of inspiration and motivation.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . v

LIST OF APPENDICES . x

ABSTRACT . xi

1 Introduction . 1

1.1 Motivation . 1
1.2 Contributions . 4

2 Background and Related Work . 7

2.1 Structure Editing . 7
2.1.1 Block-Based Editing . 7
2.1.2 Text-Like Editing . 8

2.2 Parsing . 12
2.2.1 Bottom-Up Parsing . 12
2.2.2 Operator-Precedence Parsing . 13
2.2.3 Precedence Annotations . 18
2.2.4 Error Handling . 19
2.2.5 Incremental Parsing . 20

3 tiny tylr: A Tiny Tile-Based Editor . 21

3.1 Contributions . 22
3.2 Design Overview . 23

3.2.1 Terms ⇌ Tiles: The Grouter . 23
3.2.2 Tiles ⇌ Shards: The Backpack . 27

3.3 Evaluation . 27
3.3.1 Method . 29
3.3.2 Results . 31
3.3.3 Limitations . 32

3.4 Future Work . 34

4 teen tylr: Gradual Structure Editing with Obligations 35

4.1 Contributions . 35
4.2 Design Overview . 37

4.2.1 Terms, Tiles, Shards . 37

iii

4.2.2 Terms ⇌ Tiles + Grout . 39
4.2.3 Tiles ⇌ Shards + Backpack . 39

4.3 Lab Study . 40
4.3.1 Participants . 41
4.3.2 Tasks & Editors . 41
4.3.3 Procedure . 43

4.4 Results . 44
4.4.1 Completion Times, Mental Load, Code Reuse (Q1) 44
4.4.2 Mistakes, Inefficiencies, Frustrations (Q2) 46
4.4.3 Empowering or Appealing (Q3) . 50
4.4.4 Limitations . 50

4.5 Discussion . 51

5 tall tylr: Syntactic Completions with Material Obligations 54

5.1 Contributions . 55
5.2 Design Overview . 57

5.2.1 Operand Obligations . 57
5.2.2 Infix Obligations . 58
5.2.3 Molding Ambiguity . 58
5.2.4 Ghost Obligations . 59
5.2.5 Sort Transition Obligations . 60
5.2.6 Unmolded Tokens . 61

5.3 meldr . 61
5.3.1 Elaborating Precedence Annotations . 62
5.3.2 OP Parsing Errors . 68
5.3.3 OP Parsing with Error Handling . 71

5.4 From meldr to tall tylr . 75
5.4.1 Minimizing Obligations . 77
5.4.2 Maintaining Obligations . 78
5.4.3 Performance . 79

5.5 User Study . 79
5.5.1 Study Design . 80
5.5.2 Results . 82
5.5.3 Threats to Validity . 84

5.6 Conclusion . 84

6 Concluding Remarks . 85

BIBLIOGRAPHY . 92

APPENDICES . 97

iv

LIST OF FIGURES

FIGURE

1.1 Illustration of common editor services: (A) Syntax highlighting helps the program-
mer distinguish at a glance between different syntactic sorts. (B) Hovering over a
variable binding points to its uses; clicking with a modifier lets the programmer re-
name the binding and its uses all at once. (C) Tooltips on variable uses reveal their
types and documentation; clicking with a modifier jumps to the binding site (not
shown). (D) A test runner shows the concrete values being passed into the function
over several test cases. 2

1.2 (A) A malformed editor state, with the first unexpected token underlined in red. (B)
Regions skipped by a simple panicking parser, highlighted in red. (C) Some possible
textual repairs for the first line generated by a conventional error-correcting parser. . 2

1.3 (a) A simple structure editor that projects its edit state as nested blocks (some are
elided) and features a text-like cursor. (b) When pressing Backspace on all tokens in
white (the same tokens missing in Fig. 1.2(A)), the tokens in red also get removed. . 3

1.4 The syntactic completion of the program from Fig. 1.2 in tylr, our tile-based editor. 4

2.1 Scratch blocks . 7
2.2 Violin plots of post-task questionnaire responses from a controlled user study of

MPS, adapted from [11]. Each plot partitions the responses across the three study
groups: MPS novices (Proj), MPS experts (ProjE), and text editor users (Par). 9

2.3 Screenshots of a JetBrainsMPS editor being used to edit an expression of nested func-
tion applications, one of the study tasks we used to evaluate MPS and tiny tylr
(§3.3). (a) shows all possible selections the user can make that contains a bracket,
given MPS’s restriction of selections to complete program terms. (b) shows the op-
timal edit sequence for completing the task. The ultimate effect in the user-facing
projection is swap the token ranges [y * z - y][z * y - z] and]], but selec-
tion restriction means the user must go through two separate procedures of cutting
an argument, deleting its enclosing brackets, reconstructing the brackets elsewhere,
and pasting. 11

2.4 A schematic of left-to-right bottom-up parsing, adapted from Grune and Jacobs [33] 13
2.5 A simple grammar for the differences of numbers, its derived LR(0) nondeterministic

automaton, and a sample trace identifying the first handle in the sentential form
E-n-n$. Adapted from Fig. 9.14, 9.15, and 9.16 in Grune and Jacobs [33]. 14

2.6 A simple arithmetic grammar and its derived precedence table. # denotes explicit
start and end markers of an expression—the first rule should read S𝑆 → # E #.
Adapted from Fig. 9.2 and 9.4 in Grune and Jacobs [33]. 14

v

2.7 A trace of an operator-precedence parser for the grammar in Fig.2.6, highlighting the
moments when it finds a handle containing an operator. The parser proceeds from
each such moment by reducing the found handle and tucking it under a precedence
comparison operator relating the handle’s delimiting tokens. Adapted from Fig. 9.5
in Grune and Jacobs [33]. 15

2.8 A trace of an operator-precedence parser for the grammar in Fig.2.6, highlighting the
moments when it finds a handle containing an operator or parentheses. The parser
proceeds from each such moment by reducing the found handle and tucking it under
a precedence comparison operator relating the handle’s delimiting tokens. Adapted
from Fig. 9.6 in Grune and Jacobs [33]. 16

3.1 Early mockups of restructuring mode in Hazel . 21
3.2 A high-level schematic of the concepts of tile-based editing. A tile-based editor oper-

ates on three levels of structure: terms, which follow the abstract syntax of the lan-
guage; tiles, which correspond to groups of matching delimiters; and shards, which
correspond to individual tokens and delimiters. Terms disassemble into tiles, tiles
into shards as needed to accommodate user actions; meanwhile, system aids assist
and guide user actions to ensure shards reassemble back to tiles, tiles back to terms. . 22

3.3 Screenshots of tylr showing a program’s (a) term and (b) tile structure. 24
3.4 The grouter in action, invoked (in magenta) by tylr after every user modification (in

orange). We show the underlying tile structure rather than the default term structure
for expositional clarity. 25

3.5 The backpack in action, guiding user movement based on its contents. 26
3.6 The textual syntax of Lamb (a) and the editing tasks in Lamb we assigned our par-

ticipants (b). 28
3.7 Summary of the slowdowns participants experienced in each task when using a

structure editor as opposed to a text editor, where the slowdown is calculated as
a participant’s structure editor completion time divided by their text editor comple-
tion time. Each line segment corresponds to a participant; the left and right end-
points indicate the participant’s MPS-vs-text slowdown and tylr-vs-text slowdown,
respectively, on the x-axis-labeled task. 30

3.8 Counts of selections participants picked up into the backpack when using tylr to
complete the modification tasks, broken down by task and the following structural
categorization of the selected content: a term at selection time (e.g. the selection
in Fig. 3.3a), balanced but not a term at selection time (Fig. 3.5a), and imbalanced
(Fig. 3.5b). 31

3.9 Two similar edit sequences showing the error-proneness of strictly backpack-guided
movement. Intending to perform the first edit sequence in 3.9a, where the picked-up
selection is balanced, the user may accidentally overselect and pick up an imbalanced
selection, which dramatically changes the user’s subsequent allowed movement. . . . 33

4.1 A high-level schematic of the concepts of tile-based editing, this chapter’s realization
of gradual structure editing. 36

vi

4.2 A pair of editing tasks we assigned our lab study participants, consisting of a tran-
scription task (Panel A) followed by a modification task (Panel D), and the edit
sequence by which participant P9 completed the modification task using tylr (Pan-
els B & C). Due to space constraints, the variable references center and p and the
argument to sqrt in Panels A & D are elided in Panels B & C. In Panel B, P9 begins
binding a new variable dist (B.1-3) to a newly inserted function taking arguments p1
and p2 (B.4-6). Subsequently, in Panel C, P9 selects and cuts the sqrt expression and
the two preceding let-lines (C.7-9), pastes them above the original function (C.9-11),
and completes the let-binding for dist with the concluding delimiter in (C.11-12).
Finally, not shown, they modify the variable references center and p to p1 and p2
and inserted a call to the newly defined dist function to arrive at Panel D. 38

4.3 Terms (a) and tiles (b) annotated with green borders. 38
4.4 The concrete syntax of Camel, a simple expression-based language we designed for

our lab study. Camel is a near-subset of OCaml expressions and patterns—the single
deviation, postfix parentheses instead of infix space for function application, was
to accommodate comparison with MPS, which has limited support for whitespace-
based syntax. The operator ⋗ indicates forms to its left have greater precedence than
those to its right. 41

4.5 Transcription-modification task pairs line and transforms. See Fig. 4.2 for the
third pair circle. 42

4.6 Dot plots overlaid with 95% confidence intervals summarizing how long participants
took to prepare for and complete tasks with each editor. Each dot represents an indi-
vidual participant measure. The top half shows the raw task times; the bottom half
shows the relative slowdowns/speedups participants exhibited on each task using
tylr compared to the other two editors. Confidence was calculated with the log of
both measures to correct for positive skew. 45

4.7 Box plots summarizing post-task survey responses. 47
4.8 Heat maps summarizing code reuse in the modification tasks, measured by the num-

ber of participants that inserted via typing, rather than cutting and pasting, each
token in the goal state. Delimiters auto-inserted by MPS are excluded. 48

4.9 A simpler ontology for tile-based editing . 52

5.1 Basic expression insertion in tall tylr, demonstrating operand obligations and
term decorations. 57

5.2 Adjacent operands are connected by infix obligations in tall tylr. 58
5.3 The minus sign has multiple molds. The mold is chosen to minimize obligations. . . . 58
5.4 Ghost obligations are inserted for mixfix forms in tall tylr. 59
5.5 Ghost obligation placement is chosen heuristically, here based on newline locations. 60
5.6 Ghost obligations can be ignored and are cleaned up if entered elsewhere. 60
5.7 Sort transition obligations are needed when entering forms that are not sort-correct. 60
5.8 Unrecognized tokens are left unmolded, and therefore cannot fulfill obligations. . . . 61
5.9 Syntax of precedence-bounded grammars . 62
5.10 Syntax of elaborated context-free grammars . 62

vii

5.11 A PBG GHZ for a small expression-oriented language. Sorts consist of expressions (e)
in grey, patterns (p) in blue, and types (t) in purple. Tiles are distinguished by text,
shape, and color-coded sort. 63

5.12 An excerpt of the CFG HHZ elaborated (Fig. 5.15) from GHZ (Fig. 5.11). The produc-
tion rules are arranged and color-coded by whether each is elaborated by subsuming
reduction or by tightening. 63

5.13 Precedence comparisons . 65
5.14 An excerpt of precedence comparisons 𝜏𝐿 ⊙ 𝜏𝑅 for HHZ (Fig. 5.12) 65
5.15 Bidirectional elaboration of production 𝜎 ⇒ 𝜒 and reduction 𝜎 ⇐ 𝜒 rules for CFGH

from PBG G . 67
5.16 Syntax of terms . 68
5.17 Syntax of stacks . 68
5.18 A node is well-formed if it reduces to or is produced by a symbol. 68
5.19 Well-formed stacks . 68
5.20 OP parsing . 70
5.21 An OP parsing trace for HHZ (Fig. 5.14) that gets stuck trying to compare neighbors

2 and let . 70
5.22 A valid OP parsing trace for HHZ that returns the invalid term {{ 2 } * } 70
5.23 Grout injection extending the definition of terminals 𝜏 (Fig.5.10) and reduction𝜎 ⇐ 𝜒

(Fig. 5.15) . 72
5.24 Excerpt of the grout rules injected (Fig. 5.23) into HHZ (Fig. 5.12). The production

rules are arranged and color-coded by whether they emerge from subsuming reduc-
tion or by tightening (Fig. 5.15). 72

5.25 Filling slots . 74
5.26 Parsing with meldr . 74
5.27 Pushing with meldr . 74
5.28 Corresponding traces of OP parsing (left) and meldr (right) on the same inputs to

highlight their differences . 74
5.29 meldr filling slot �p1 with grout form { p} . 74
5.30 meldr traces with multi-step precedence walks . 75
5.31 Complete parsing traces using the rules in Fig. 5.27 to illustrate howmeldr (a) avoids

producing ill-formed terms like in Fig. 5.22 and (b) avoids getting stuck like in Fig. 5.21 76
5.32 Task 6 asked participants to refactor a function from the start state on the left to

the target state on the right. Highlighting is added here for readability and was not
present in the study. 81

5.33 Participant opinions on tall tylr’s general usability (left) and reactions to place-
holders (right) . 82

5.34 During Task 8, participants must modify type annotation (A) to uncurried form. If
this is approached in a left-to-right fashion, the user will insert a comma (creating
an operand obligation), delete the parenthesis (leaving a ghost), and delete the type
arrow (creating a infix obligation) as shown in (B). If the ghost parenthesis did not
retain its location, the grout could be combined and cleaned up. This cleanup only
occurs when the user re-inserts the closing parenthesis (C). 83

viii

A.1 Push invariant . 105

B.1 Time taken to parse syntactically correct and prefix-complete programs across a
range of program lengths . 111

B.2 Time taken to perform 200 single-character token insertions in an operand hole of
the specified depth . 111

B.3 Time taken to perform 200 single-character token insertions in an operand hole of
the specified operand sequence length . 111

C.1 A participant has stubbed the header for a helper function, and is about to cut some
relevant code to paste in the helper. However, they left the in delimiter belonging to
the helper stub as a ghost, and incidentally omitted an in from their selection. On
cut, that latter in becomes an orphan, which is then matched to the ghost in. This
has the effect of shunting the existing function literal into the body of the helper. . . 112

C.2 During Task 6, participants had to push an if expression deeper into a function,
which they typically approached by cutting the segment highlighted in yellow. This
cut leaves behind an unmolded red ’else’ delimiter and an infix obligation. Since infix
obligations are assigned the loosest precedence, the function literal taking square as
an argument is now entirely on the left side of the grout, and the expression on the
last line of the program is no longer inside that function literal, resulting in a subtle
but substantial change to the program structure. 112

ix

LIST OF APPENDICES

A Proofs for §5.3 . 98

B tall tylr Performance . 110

C Additional Data for §5.5 . 112

x

ABSTRACT

Language-aware program editors offer essential services to help programmers understand, nav-
igate, and modify their code in various stages of completion. These services require analyzing
the syntactic structure of the code, which is typically inferred by a parser from textual input.
The problem motivating this work is that, for typical grammars, most textual edit states do not
successfully parse, compromising the behavior of downstream editor services.

Contemporary editors address this issue in one of two ways: either it is a text editor equipped
with an error-handling parser, or it is a structure editor whose edit operations maintain syntac-
tic structure throughout development. Error-handling parsing methods, which often repair the
text around unexpected tokens, leave unanswered questions about how to surface these repairs
effectively to the programmer. Meanwhile, structure editors are notoriously cumbersome to use,
particularly when it comes to modifying existing code, due to mismatch between the tree struc-
ture of the internal edit state and the linearity of the externally projected view.

This dissertation contributes the tylr series of program editors, a series of increasingly flex-
ible structure editors that converge on a novel method of error-handling parsing. The central
innovation is a language-parametrized system of syntactic obligations used to scaffold and guide
completion of partial structures. From the view of structure editing, obligations generalize holes
(placeholders for missing trees) and enable flexible interactions with arbitrary token ranges while
preserving structural guarantees. From the view of error-handling parsing, they abstract over
similarly structured textual repairs that prior methods would consider individually, as well as
offer new possibilities for user-interaction.

I propose and evaluate three such possibilities that constitute the tylr series: tiny tylr,
teen tylr, and tall tylr. Informed by user studies of its predecessors, each iteration loosens
restrictions on the interactive behavior of obligations to support more flexible, text-like work-
flows. These changes lead to an error-handling generalization of operator-precedence parsing,
formalized as a parsing calculus called meldr, that recovers from errors by inserting obligations
and is guaranteed to produce a grammatical term on all inputs. I conclude with a discussion of
takeaways for future program editor designs.

xi

CHAPTER 1

Introduction

Language-aware program editors offer a range of useful services that help programmers un-
derstand, navigate, and modify their code in various stages of completion. Common examples,
illustrated in Fig. 1.1, include (A) syntax highlighting, (B) variable renaming and type inspection,
(C) go-to definition and documentation preview, and (D) live value inspection. These services
require analyzing the syntactic structure of the program being edited, which is typically inferred
by a parser from textual input. The problem motivating this work is that, for typical grammars,
most textual edit states do not successfully parse, compromising the behavior of downstream
editor services.

Consider Fig. 1.2(A), for example, which shows a malformed version of the program in Fig. 1.1.
Processing the text left-to-right, a naively implemented parser would simply stop upon encoun-
tering the first unexpected token, p2, at the end of the first line, leaving the program unparsed
and therefore unanalyzable. All of the downstream services shown in Fig. 1.1 would then have to
be disabled, leaving the programmer only with “dead” text. This is unfortunate, especially since
it is in these erroneous states that the programmer may need the most help.

Existing program editors address this problem in one of two ways. Either it is a text editor
equipped with an error-handling parser, which produces analyzable structure from the text on
a best-effort basis, or it is a structure editor whose edit operations maintain syntactic structure
throughout development. The two approaches differ in the trade-offs they make between service
availability and editor usability, which we will discuss next in §1.1. This work considers how we
might combine their strengths.

1.1 Motivation

Error-handling parsing. An error-handling parser attempts to recover from unexpected tex-
tual input, typically by repairing the input and adjusting its internal state, so that it can resume
parsing as usual. This way, editor services may continue to operate on the rest of the program
around the error site. However, existing methods suffer from various limitations. Let us consider

1

Figure 1.1: Illustration of common editor services: (A) Syntax highlighting helps the programmer distinguish at
a glance between different syntactic sorts. (B) Hovering over a variable binding points to its uses; clicking with a
modifier lets the programmer rename the binding and its uses all at once. (C) Tooltips on variable uses reveal their
types and documentation; clicking with a modifier jumps to the binding site (not shown). (D) A test runner shows
the concrete values being passed into the function over several test cases.

Figure 1.2: (A) A malformed editor state, with
the first unexpected token underlined in red.
(B) Regions skipped by a simple panicking
parser, highlighted in red. (C) Some possible
textual repairs for the first line generated by a
conventional error-correcting parser.

how they might recover from the unexpected token p2 in Fig. 1.2(A).
A simple recoverymethod known as “panicmode” [5, 33] drops tokens heuristically around the

error until parsing can resume—in this case, as shown in Fig.1.2B, a simple panicking parsermight
drop the first four lines of code because of the various parse errors on those lines, then perhaps
recover more granularly on the final line by ignoring the dangling minus sign. While better than
nothing and relatively easy to implement, this approach is liable to ignore large windows around
error locations [25], leaving the programmer with limited or incorrect assistance in those regions.
For example, the dropped lines in Fig. 1.2B would lead a type error reporting service to mark the
uses of x1, y1, and y2 unbound (in contrast to what a human would likely conclude).

More sophisticated recovery methods consider a broader range of possible repairs around
the error location. Fig. 1.2C shows some possible repairs for the first line of code in Fig. 1.2A.
The first three repairs show how, by considering possible insertions as well as deletions, this
method reduces skipped input compared to a panicking parser. On the other hand, the next four
completion-only repairs show how this methodmust enumerate all tokens that play similar struc-
tural roles—in this case, infix operators on patterns—which can lead to combinatorial explosion as
additional insertions and deletions, larger repair windows, and larger languages are considered.
There is prior work that suggests these repairs can be enumerated efficiently in practice [16, 25],

2

(a) (b)

Figure 1.3: (a) A simple structure editor that projects its edit state as nested blocks (some are elided) and features
a text-like cursor. (b) When pressing Backspace on all tokens in white (the same tokens missing in Fig. 1.2(A)), the
tokens in red also get removed.

but limit their consideration of how to surface these repairs to the programmer to ranking the
repairs in an interactive dropdown menu. Such interfaces are uncommon in practice, perhaps
because the visual information density of a list of various similar textual repairs is too low to
be worth the effort of disambiguation. More commonly, the parser chooses for them, typically
using some mixture of text-based and language-tuned heuristics [27, 30]. In this case, however,
the choice is rarely surfaced to the programmer, leaving them only indirect clues in the behavior
of downstream editor services.

In summary, existing error-handling parsing methods either limit themselves to deletion-
based repairs, leading to large ignored regions; or else they incorporate insertion-based repairs
but set aside questions about how to surface these repairs to the programmer, leading either to
too many choices or a lack of transparency. Is there a better user interface out there for syntactic
repairs?

Structure editing. Given the challenges of parsing and error handling, there has been a long
and storied line of research on structure editing (a.k.a. structured editing or projectional editing)
[6, 34, 44, 45, 50, 53, 59, 62]. A structure editor maintains a tree-structured edit state rather
than a textual one, with holes standing for missing subtrees, and projects it to the programmer’s
display in a suitably interactive form. Interactions with this projection are then mapped back to
the edit state as tree-to-tree transformations, which ensures that the edit state is continuously
well-structured and amenable to analysis.

For example, Fig. 1.3a illustrates how a simple structure editor might project the program in
Fig. 1.1 as nested labeled blocks. A text-like cursor navigates between tokens in the visualized
order and highlights the smallest block containing the current token, indicating it is the target
of any subsequent modifications (e.g. removing it, wrapping it in a new block). Because changes
occur at the granularity of whole tree nodes, malformed edit states like the one in Fig. 1.2 would
simply be unreachable.

Unfortunately, this continuous structure comes at the cost of a highly viscous [31] editing

3

Figure 1.4: The syntactic completion of the program from Fig. 1.2 in tylr, our tile-based editor.

experience, i.e. it can be cumbersome to modify existing code. Pretend you are the designer of
the structure editor in Fig.1.3: what should the result be of pressing Backspace at the depicted edit
state in (a)? Should this editor behave like Scratch [44] and remove the entire block, descendants
included, leaving a hole in its place? If not all descendants, which should be left behind instead?
(Is your choice based on a generic or form-specific policy? Howwill you communicate this policy
to the programmer?) However you choose, your choice is limited to at most one block to replace
the removed one.

Consequently, deletion in strict structure editors can feel a bit like a sledgehammer. Fig. 1.3b
shows one possible outcome of pressing Backspace on all the tokens in white, the same as the
onesmissing in Fig.1.2(A). Amajority of the total perceived change is collateral damage, shown as
tokens in red, that can be challenging to predict even for experienced users (see Fig. 2.2, adapted
from a study of the MPS structure editor [11]). Might it be possible to support more precise
deletion behavior without sacrificing all structural guarantees?

It is further interesting to contrast the collateral damage in Fig. 1.3b to the tokens skipped
by the panicking parser in Fig. 1.2(B), both caused by the same tree-structural constraints. The
structure editor manages to get away with relatively less damage, thanks to its ability to insert
holes in place of missing trees, which lets it preserve the two innermost let-expressions. Could
there be other forms of “holes” used to further reduce the damage?

1.2 Contributions

This dissertation contributes the tylr series of program editors, a series of increasingly flexible
structure editors that converge on a novel framework for error-handling parsing. The central
innovation is a language-parametrized system of syntactic obligations used to scaffold and guide
completion of partial structures. From the view of structure editing, obligations generalize holes
and enable flexible interactions with arbitrary token ranges while preserving structural guaran-
tees. From the view of error-handling parsing, they abstract over similarly structured textual
repairs that prior methods would consider individually, as well as offer new possibilities for user-
interaction.

4

Fig. 1.4 shows how the latest tylr editor repairs our malformed program text in Fig. 1.2A
by completing it with various obligations. These obligations categorize the various multiplicity
and sort inconsistencies that, when parsing, may arise between top-down expectations of the
language grammar and bottom-up reductions of the input tokens:

• Lines 3-5 are missing operands of various syntactic sorts: one pattern, three types, and two
expressions. In their place are operand obligations that, like structure editor holes, indicate
there is no subtree where one is expected (0 = ● < 1).

• Lines 1-2 are missing delimiters required by various multi-delimiter forms. In their place are
delimiter obligations—) , => , and in in transparent italicized font—that indicate there is
a partial form where a complete one is expected (0 < ● < 1).

• Line 4 is missing a pattern form expected to wrap the following type. In its place is a sort
transition obligation that indicates there is a subtree as expected (● = 1), but of the wrong
sort.

• Line 1 is missing a connective between the two pattern variables. In its place is an infix
obligation that indicates there are multiple unjoined subtrees where one is expected (1 < ●).

In short, obligations classify and repair all the ways a bottom-up parse may “go wrong”.
I did not start this work with this parsing-centric understanding of obligations. Early on, my

goal was to design an easy-to-use text-like structure editor for the Hazel programming environ-
ment [55]. Prior art at the time supported some text-like insertion patterns, e.g. writing infix
operator sequences left-to-right, but offered no similar guidance for selection or deletion. I re-
view this work among others in Chapter 2, focusing on designs with keyboard-driven textual
projections, and identify three distinct facets of their viscosity—selection expressivity, delimiter
matching, and term multiplicity—that help explain why even experts of an existing tool reported
finding it difficult to predict the result of deletions, and directly motivate our obligation design.

Central in this work is the question of how the programmer should interact with these
obligations—in particular, how to discharge them. I propose and evaluate three possible answers
that constitute the tylr series: tiny tylr (Chapter 3); teen tylr (Chapter 4); and tall tylr

(Chapter 5), the latest version of tylr as of this writing. Using tall tylr in Fig. 1.4, for example,
the programmer may accept the suggested location of the delimiter obligation in by placing
the cursor on it and pressing the Tab key or typing over it explicitly; alternatively, they may type
in in a different intended location, and the obligation is removed when no longer necessary. In-
formed by user studies of its predecessors, each iteration loosens restrictions on the interactive
behavior of obligations to support more flexible, text-like workflows.

Chapter 3 on tiny tylr (adapted from [46]) and Chapter 4 on teen tylr (adapted from [47])
show how we first developed, then refined the use of syntactic obligations for improving struc-

5

ture editor usability. The main idea governing those designs was to allow selection and modifi-
cation of arbitrary token ranges, while scaffolding the results with obligations to guide proper
reassembly back to hierarchical structure. Our user studies focused on structurally complex mod-
ification tasks and showed significant improvements in modification performance and reductions
in mental load when participants used tiny tylr and teen tylr over JetBrains MPS editors, the
state-of-the-art in keyboard-driven structure editing.

Our studies also suggested that there remained usability limitations in our designs compared
to text editors. Refining our conceptual design of obligations in response to this feedback led
us to the error-handling parsing approach taken by tall tylr in Chapter 5 (adapted from [48]).
Unlike the preceding chapters, which focused entirely on the user-interaction design of obliga-
tions, this chapter gives a formal, language-agnostic description of obligations and their use in
error-handling parsing. Specifically, this chapter contributesmeldr, a parsing calculus consisting
of two parts: a grammar transformation that extends the language grammar with a small num-
ber of obligation forms per sort, and an error-handling generalization of an operator-precedence
parser that is proven to be capable of completing any sequence of terminal symbols with obliga-
tions and parsing it into an extended-grammatical term. Along the way, this calculus contributes
a novel parser-independent semantics for precedence annotations on context-free grammars.

meldr goes beyond mere recognition of grammatical input, as is typical of existing parsing
formalisms, and models the resulting concrete syntax trees. While our current theory only de-
scribes left-to-right parsing from scratch, these definitions establish a foundation for future work
on modeling structured edit states and incremental parsers. I conclude in Chapter 6 with a dis-
cussion of ongoing work and takeaways for the design of future program editors.

Among other things, this work defends the following statement:

Syntactic obligations provide the basis for flexible structure editing and total error-
handling parsing that skips no input.

6

CHAPTER 2

Background and Related Work

2.1 Structure Editing

tylr contributes to a long history of structure editor design, dating as far back as the Emily editor
introduced in 1971 [34].

2.1.1 Block-Based Editing

Figure 2.1: Scratch blocks

The most popular structure editors today are block-based editors
like Scratch [44]. In these editors, the programmer constructs pro-
grams like those shown in Fig. 2.1 (adapted from Weintrop [67])
using their mouse to drag-and-drop blocks together on a canvas.
Each block corresponds to a syntactic form of the underlying lan-
guage and is shaped, based on its sort and type, to visually indi-
cate how it should be placed relative to other blocks. The tylr

editors employ a similar metaphor of syntactic-forms-as-puzzle-
pieces, but use a uniform shape system across all sorts, eliminating
the visual design burden of language customization.

While block-based editors have seen great success at teach-
ing programming to novices, they soon become unwieldy once
programmers start creating and maintaining larger or more
expression-based programs. For example—adapting an observa-
tion by Brown et al. [12]—constructing the small calculation at the bottom of Fig. 2.1 involves
assembling seven blocks, each requiring a sequence of mouse gestures to find the appropriate
form and drag-and-drop it into the right spot on the canvas; meanwhile, the equivalent construc-
tion in a text editor would take seven keypresses. The block-based approach is further slowed
if the user chooses to construct the expression left-to-right or bottom-up rather than top-down,
since wrapping an existing block in a new one requires two drag-and-drop sequences (drag in the

7

new block, then drag into it the existing block). Meanwhile, the vertical height of the expression
block grows with its tree height, leading to low visual information density when working with
deeply nested expressions [36]—our designs avoid this problem by only decorating the structures
under the cursor, rather than decorating all structures at all times.

In a user study of block-based editing involving large refactoring tasks, Holwerda and Her-
mans [36] elicited post-task user responses on the cognitive dimensions [31] of block-based edit-
ing and found that viscosity was the most commented-on dimension with 24 remarks. Half (12)
were positive, a majority of which were about the ease of refactoring when the selected elements
corresponded to complete syntactic terms. Of the negative half, half (6) were about the difficulty
of refactoring when the desired selection does not correspond to a complete term—for example,
in Fig. 2.1, dragging the move block out of the repeat block drags all the statements below along
with it, thereby requiring multiple gestures in sum to select and remove the single move block.

Verano Merino and van der Storm [61] present a method for generating block editors from
grammars, refined by Verano Merino et al. [60] by pre-processing grammars to remove parsing-
specific production rules not relevant in a block context. More recent work by Steimann and
Stunic [58] re-contextualizes block editor derivation via dependency grammars, a framework
which more naturally supports the derivation of block editors for context sensitive languages.

Homer and Noble [37] present a hybrid text and block-based programming language called
Tiled Grace, which they term ‘tile-based’, though their tiles are closer to blocks in the
Scratch/Blocky sense than the tylr sense. Tiled Grace can shift between draggable blocks and
editable textual syntax, though this shift is modal. No attempt is made to preserve structure in
the textual mode, and the text must be syntactically correct to switch back to tile form.

2.1.2 Text-Like Editing

In this work, I focus on keyboard-driven, textually projecting structure editing in order to capi-
talize on the literacy and keyboard skills of experienced programmers. This avoids the particular
pitfalls of block-based editing but faces new challenges.

Some keyboard-driven editors like Greenfoot [42] and the Cornell Program Synthesizer [59]
employ hybrid editing models, using structure editing for large syntactic forms while deferring
to text editing at the leaves, e.g. when editing expressions. This approach loses the benefits of
structure editing at those levels.

Other editors, like those built with the language workbench JetBrains MPS [62], take a strictly
structured approach and use a number of techniques to translate text-like editing flows into tree
transformations. MPS editors project the program tree to a caret-navigated textual form. Editor
behavior is customizable, both by modifying the language grammar and by implementing hooks

8

Figure 2.2: Violin plots of post-task questionnaire responses from a controlled user study of MPS, adapted from
[11]. Each plot partitions the responses across the three study groups: MPS novices (Proj), MPS experts (ProjE), and
text editor users (Par).

that modify the program tree when triggered, often for the purpose of easing linear interactions
with the textual projection. These customizations can get quite varied and complex when im-
plemented directly, especially when dealing with issues of operator precedence and associativity,
so the most common editing patterns are codified in a domain-specific language called grammar
cells [63].

Chapter 4 presents a detailed comparison of teen tylr with an MPS editor configured with
grammar cells (as well as a text editor). Prior work on structure editing focuses its efforts on
statement-based languages, where the sequential syntactic structure of statement blocks allevi-
ates some of the awkwardness of strictly tree-structured editing. The problem remains, however,
at the typically expression-structured leaves of the program tree. While additional mitigations
like grammar cells exist, they are limited to an ad hoc collection of editing patterns—e.g. tran-
scription of single-token infix operator sequences—that are concentrated on insertion and offer
much less for selection, deletion, and modifying more complicated expression structures.

The consequences are shown in the violin plots in Fig. 2.2 reproduced from a user study com-
paring text editing to MPS. The left two plots in Fig. 2.2 show that, after the 90-minute study, MPS
novices felt that selectionwas relatively slow and inaccurate. The viscosity here is caused bywhat
I call the selection expressivity problem, namely that selections must cleave to whole terms.
It is impossible to select portions of a term, or for selections to span across term boundaries, even
when the intended tokens are visually adjacent. For example, in 2 * 3 + 4, it is impossible to
select 3 + 4 or + 4. This can lead to cumbersomemulti-step interactions to performwhat amount
to simple swaps of token ranges in the user-facing text-like projection, as shown for example in
Fig. 2.3. Recent work by Prinz et al. [56] proposes mitigating the selection expressivity problem
by supporting selections of one-hole contexts, i.e. trees with a single hole—our work aims instead

9

for text-like selections of arbitrary token ranges.
Meanwhile, the right two plots in Fig. 2.2 show that both MPS novices and experts struggled

to predict the effects of deletion operations, which can be suprisingly destructive in the name of
maintaining strict tree structure. I construe this overall phenomenon as the combination of two
distinct problems.

First, the delimiter matching problem arises from the constraint that all keywords or sym-
bols from the projection of a term (referred to as the term’smatching delimiters) are inserted and
deleted together. Matching delimiters may be visually distant from one another due to interven-
ing children, leading to a sort of “spooky action at a distance” and making edits that amount to
repositioning or changing an individual delimiter difficult. For example, in a text editor one can
go from f(2 * 3) + 4 to f(2 * 3 + 4) by deleting (or cutting) the closing parenthesis and
inserting (or pasting) it after 4, whereas in MPS, deleting the closing parenthesis also deletes the
matching opening parenthesis (and the function argument, which brings us to the next problem).

The second source of over-deletion, which I refer to as themultiplicity problem, arises from
the fact that in a text editor, terms can appear transiently adjacent to one another, e.g. deleting the
+ in 2 + 3 leaves 2 3, whereas in a strict, single-tree structure editor, deletion must leave behind
either a hole, i.e. zero terms, or one term. Consequently, MPS deletes not just the + character but
also all but at most one of its child operands, leading to behavior that is difficult even for experts
to predict. Block-based editors sidestep the multiplicity problem because any number of disjoint
structures may co-exist in their canvas-based interfaces, but at the cost of slower mouse-driven
input. In Chapter 4, I describe how the matching and multiplicity problems led to competing
demands for limited clipboard space when our study participants used MPS, leading to higher
reported mental load.

Beckmann et al. [10] proposed a system called Sandblocks for supporting some text-like edit-
ing flows using a form of incremental parsing called partial parsing [9]. Sandblocks uses partial
parsing to complete prefixes of syntactic forms and lets the user pick between different possible
completions using a dropdown menu, where completions may features holes for missing terms.
Like MPS, these techniques are limited to simple wholesale insertion and deletion flows and does
not address the viscosity problems associated with more complex modifications. In particular,
Sandblocks does not support structurally cross-cutting selections.

The present work grew out of work started in Hazel [55], a live functional programming en-
vironment. Hazel is built on a theory of incomplete programs that assigns static [53, 70] and
dynamic [52, 69] meaning to every well-structured edit state. Omar et al. [51] developed on top
of these foundations a system of live graphical macros, called livelits, that enable new combina-
tions of graphical and symbolic programming in the same editor. The promise of rich editing
experiences like these continues to motivate the present work.

10

(a)

(b)

Figure 2.3: Screenshots of a JetBrains MPS editor being used to edit an expression of nested function applications,
one of the study tasks we used to evaluate MPS and tiny tylr (§3.3). (a) shows all possible selections the user can
make that contains a bracket, givenMPS’s restriction of selections to complete program terms. (b) shows the optimal
edit sequence for completing the task. The ultimate effect in the user-facing projection is swap the token ranges [y
* z - y][z * y - z] and]], but selection restriction means the user must go through two separate procedures
of cutting an argument, deleting its enclosing brackets, reconstructing the brackets elsewhere, and pasting.

11

2.2 Parsing

First, some preliminary definitions. A context-free grammar (CFG) consists of:

• a set 𝑋 = 𝑇 ⊔ 𝑁 of symbols, partitioned into sets 𝑇 and 𝑁 of terminals and nonterminals,
respectively;

• a set of production rules, each a mapping 𝑛 ↦ 𝑥 from a nonterminal 𝑛 ∈ 𝑁 to a sequence of
symbols 𝑥 ∈ 𝑋∗; and

• a designated start symbol 𝑛0 ∈ 𝑁 .

If 𝑛 ↦ 𝑥 is a production rule, then for all symbol strings 𝑥𝐿, 𝑥𝑅 ∈ 𝑋∗, we say that the string
𝑥𝐿𝑛𝑥𝑅 yields the string 𝑥𝐿𝑥𝑥𝑅 , written 𝑥𝐿𝑛𝑥𝑅 ⇓ 𝑥𝐿𝑥𝑥𝑅 . If 𝑥0 ⇓∗ 𝑥 , where ⇓∗ denotes the reflexive
transitive closure of ⇓, we say that 𝑥0 derives 𝑥 . Given a string of terminals 𝑡 ∈ 𝑇 ∗, the goal of
parsing is to show there exists a derivation 𝑛0 ⇓∗ 𝑡 . Any string of symbols 𝑥 ∈ 𝑋∗ derivable from
𝑛0 is called a sentential form.

Witnessing every derivation 𝑛0 ⇓∗ 𝑡 is a sequence 𝑛0 ⇓ 𝑥1 ⇓ ⋯ ⇓ 𝑥𝑘 = 𝑡 (𝑘 ≥ 0) of yields,
each invoking a production rule. We may organize this sequence of yields into a derivation tree:
a tree whose leaves are labeled with the terminals in 𝑡 , and whose internal nodes are labeled with
nonterminals, the root labeled 𝑛0, such that every internal node 𝑛 and its children 𝑥 corresponds
one-to-one to a yield invoking the rule𝑛 ↦ 𝑥 in the overall sequence. Given a string of terminals 𝑡 ,
a recognizer checks whether there exists a derivation 𝑛0 ⇓∗ 𝑡 , while a parser additionally produces
the witnessing derivation tree, called in this context the parse tree. It is possible in general for
there to be multiple parse trees for the same input, in which case the underlying grammar is
called ambiguous.

2.2.1 Bottom-Up Parsing

A bottom-up parser starts with a sequence of terminal leaves 𝑡 and repeatedly merges together
neighboring trees as permitted by production rules, until there remains a single parse tree helmed
by the start symbol (provided nothing goes wrong).

Fig. 2.4 illustrates this process when parsing left-to-right. The parser ingests terminal leaves
one-by-one, organizing them in a stack and merging them in-place when appropriate. A left-
to-right bottom-up parser is also called a shift-reduce parser because at each step, it may either
shift the next terminal leaf onto the stack or else reduce (merge) together a span of neighboring
trees on the stack. How the parser identifies the next reduction target, called the handle, is its
distinguishing feature amongst other shift-reduce parsers.

For example, LR(k) parsers [41] identify handles using a grammar-derived automaton that
is run alongside the stack in Fig. 2.4 and fed the same terminals. Fig. 2.5 shows at the top a

12

Figure 2.4: A schematic of left-to-right bottom-up parsing, adapted from Grune and Jacobs [33]

simple grammar for the differences of numbers alongside its LR(0) handle-finding automaton.
Each state is labeled with an item consisting of a production rule and a marked point in its yield—
this signifies the automaton’s current progress toward identifying a handle reducible by that rule.
At the bottom is a sample trace of the automaton processing a sentential form when it finds its
first handle, i.e. reached an item T → 𝑛● marked at its right end. To perform the reduction, the
automaton is rewound to the state immediately before the handle, i.e. the last state with item
E → ●T; the handle n is reduced to T; then T is fed back to the automaton. (Exercise: what is the
resulting state?)

2.2.2 Operator-Precedence Parsing

Operator-precedence (OP) parsing [29] is an early pioneer of shift-reduce parsing. Instead of a
handle-finding automaton, an OP parser consults a precedence table, a CFG-derived table record-
ing which precedence relations hold between all pairs of terminal symbols. Fig. 2.6 shows the
derived precedence table for a simple arithmetic grammar following the standard order of oper-
ations.

Each cell in the table, at row 𝑡𝐿 and column 𝑡𝑅 , records whether the terminals 𝑡𝐿 and 𝑡𝑅 are
precedence-related and, if so, by which operator(s) ⊙ ∈ {⋖,≐,⋗}. Each precedence-related pair
𝑡𝐿 ⊙ 𝑡𝑅 indicates the terminals appear consecutively in the given order, possibly separated by a
nonterminal 𝑛, in some sentential form 𝑥 = ⋯ 𝑡𝐿 {𝑛?} 𝑡𝑅 ⋯. The operator ⊙ ∈ {⋖,≐,⋗} indicates
in what order 𝑡𝐿 and 𝑡𝑅 were first yielded in the derivation of 𝑥 . For example, + getting yielded
before × in the sequence

S𝑆 ⇓ E ⇓ E + T ⇓ E + T × F

13

Figure 2.5: A simple grammar for the differences of numbers, its derived LR(0) nondeterministic automaton, and
a sample trace identifying the first handle in the sentential form E-n-n$. Adapted from Fig. 9.14, 9.15, and 9.16 in
Grune and Jacobs [33].

Figure 2.6: A simple arithmetic grammar and its derived precedence table. # denotes explicit start and end markers
of an expression—the first rule should read S𝑆 → # E #. Adapted from Fig. 9.2 and 9.4 in Grune and Jacobs [33].

14

Figure 2.7: A trace of an operator-precedence parser for the grammar in Fig. 2.6, highlighting the moments when it
finds a handle containing an operator. The parser proceeds from each such moment by reducing the found handle
and tucking it under a precedence comparison operator relating the handle’s delimiting tokens. Adapted from
Fig. 9.5 in Grune and Jacobs [33].

15

Figure 2.8: A trace of an operator-precedence parser for the grammar in Fig. 2.6, highlighting the moments when
it finds a handle containing an operator or parentheses. The parser proceeds from each such moment by reducing
the found handle and tucking it under a precedence comparison operator relating the handle’s delimiting tokens.
Adapted from Fig. 9.6 in Grune and Jacobs [33].

tells us that + ⋖ ×. Similarly, (and) getting yielded together in the sequence

S𝑆 ⇓ E ⇓ T ⇓ F ⇓ (E)

tells us (≐).
Given the notation, you might be tempted to think that 𝑡𝑙 ⋖ 𝑡𝑅 is equivalent to 𝑡𝑅 ⋗ 𝑡𝐿 , or that ≐

is symmetric—neither is the case. Keep in mind that the written order of each related pair 𝑡𝐿 ⊙ 𝑡𝑅

of terminals reflects the order in which they appear in the sentential form 𝑥 = ⋯ 𝑡𝐿 {𝑛?} 𝑡𝑅 ⋯
witnessing their relation. Relatedly, the derivation

S𝑆 ⇓ E ⇓ E +𝑅 T ⇓ E +𝐿 T +𝑅 T

tells us that +𝐿 ⋗ +𝑅 , i.e. + is left-associative.
It is possible in general for the same pair of terminals to be precedence-related via multiple

operators, or none at all. To make use of these relations without backtracking, an OP parser
stipulates that every pair of terminals be precedence-related by at most one operator—i.e. they
are conflict-free—as is the case for the arithmetic grammar in Fig. 2.6.

Fig. 2.7 and Fig. 2.8 show traces of the arithmetic parser parsing sentential forms using the
precedence table in Fig. 2.6. What is unusual about OP parsing compared to other methods is that
it is blind to nonterminals. The stack is a chain # [t 𝑡𝑖]0≤𝑖≤𝑛 of precedence-related terminals,

16

where each precedence operator may additionally have a reduced un-nonterminal-labeled tree
tucked under it. Every step of OP parsing begins with a precedence comparison between the
nearest terminal 𝑡𝐿 in the stack and the next input terminal 𝑡𝑅 . If 𝑡𝐿 t 𝑡𝑅 for either t∈ {⋖,≐}, then
the parser shifts t 𝑡𝑅 onto the stack. Otherwise, if 𝑡𝐿 ⋗ 𝑡𝑅 , this marks the end of a handle and
it is time to reduce. Rather than by citing a production rule, handles are identified as chains of
precedence-related terminals of the form 𝑡0 ⋖ 𝑡1 ≐ ⋯ ≐ 𝑡𝑛 ⋗ 𝑡𝑛+1, where 𝑡0 and 𝑡𝑛+1 are delimiters
to the actual handle segment between them—in this case, 𝑡𝑛 = 𝑡𝐿 and 𝑡𝑛+1 = 𝑡𝑅 . The handle is
reduced under a new unlabeled node, then passed on to the next OP parsing step, to be tucked
under the next precedence comparison.

Because of this nonterminal-blindness, OP parsing is unsound [43], meaning it may accept
non-sentential forms.1 See Fig. 5.22 in Chapter 5 for an example of an unsound trace. Simple
precedence parsing [68] presents one way of re-introducing nonterminals into OP-style parsing,
which is to extend precedence comparisons to all symbols, not just terminals—unfortunately
this comes at the cost of a severely restricted grammar class [33]. In a resolution similar to
ours, Henderson and Levy [35] split each precedence relation ⊙ into two relations ⊙1 and ⊙2,
the difference being whether a reduced nonterminal is expected between the related terminals.
meldr generalizes this idea by indexing each relation by the optional nonterminal itself—the slot-
filling operation in meldr (Fig. 5.25) uses this extra information to validate that the bottom-up
accumulated reduction meets the top-down slot’s requirements.

OP parsers are easily specified and implemented, scale linearly with input, and enjoy the
bounded-context property: handles can be identified knowing only the terminals that delimit
them on the left and right.2 Barenghi et al. [7, 8] exploited this property to develop efficient
parallel parsers. In that work, they show how the bounded-context property implies that any
delimited range of symbols within a sentential form can be reduced to a uniform double-ended
stack-like structure—more precisely, for any delimited range 𝑡𝐿𝑥𝑡𝑅 of symbols within a sentential
form, there exists a unique string 𝑦 = 𝑦𝐿𝑦𝑅 such that 𝑦𝐿 contains only u-operators, 𝑦𝑅 contains
only t-operators, and 𝑡𝐿𝑦𝑡𝑅 ⇓∗ 𝑡𝐿𝑥𝑡𝑅 . This is an appealing property for building program editors
and services, because it provides a uniform, maximally structured, and modular interface to any
user-selected (or otherwise relevant) token range—where by modular I mean that the range need
not also lug around its context to be structured and analyzed.

Despite these various advantages, OP parsing is typically passed over for more sophisticated
methods (e.g. LR) because of its limited grammar expressivity. The requirement that the prece-
dence table be conflict-free makes it difficult to reuse the same terminal symbol in different syn-

1Levy [43] took the goal of parsing to be detecting invalid sentences rather than valid ones, and hence called
“complete” (detect all invalid sentences) what we call “sound” (detect only valid sentences) in this work.

2Specifically, this is 𝐵𝐶(1, 1) property, where 𝐵𝐶(𝑚,𝑛) means handles can be identified knowing𝑚 symbols on
the left, 𝑛 symbols on the right.

17

tactic contexts, e.g. the minus symbol for both prefix negation and infix subtraction. On the
other hand, Grune and Jacobs [33] remark that it is “surprising how many grammars are (almost)
operator-precedence.” Later in Chapter 5, I consider how we might retain the editor modeling ad-
vantages of OP parsing while also permitting reuse of tokens in different grammatical contexts.

2.2.3 Precedence Annotations

In OP parsing, the handle-identifying precedence relations are derived automatically from the
grammar and its derivation patterns. In other words, these methods expect operator precedence
conventions to be encoded in the CFG’s nonterminal dependency structure. This is tedious to do
by hand and leads to a profileration of nonterminals, one for each precedence level, that obscure
the language’s natural organization into semantic sorts—for example, consider the difference be-
tween the grammar in Fig. 2.6 and the grammar E→ n ∣ (E) ∣ E + E ∣ E × E. Our grammar elabo-
ration (Fig.5.15) automatically extracts these dependency structures from a precedence-annotated
grammar. Not only does this organization benefit grammar authoring and documentation, it also
helps our system repair errors using a concentration of grout forms that are semantically mean-
ingful and thereby more easily user-communicable.

A different way to specify operator precedence is to annotate the CFG’s production rules with
explicit precedence levels or comparisons, like in our precedence-bounded grammars (Fig.5.9) and
as commonly supported by modern parser generators. This approach allows for a close mapping
between the language’s semantic and syntactic organization—not only does this make it easier to
author grammars, it also lets our system repair errors using a concentration of grout forms that
are semantically meaningful and thereby more easily user-communicable.

Predominant interpretations of precedence annotations, however, are specific to the parsing
method—in LR parser generators, for example, the annotations are used to resolve shift/reduce
conflicts in the generated action table [4]. Less common are parser-independent semantics, such
as our PBG-to-CFG elaboration (Fig. 5.15). §5.3.1.4 described how prior semantics by de Souza
Amorim and Visser [21] (for the language workbench Spoofax [39]) and Danielsson and Norell
[20] (for mixfix operators in Agda) are unnecessarily restrictive in how they handle prefix and
postfix operators. Making similar observations, Aasa [3] defined the precedence weights that
we recapitulate in our elaborated reduction rules (Fig. 5.15). Aasa used these measures to define
when a derivation tree of the underlying unannotated grammar is precedence-correct according
to the annotations. Separately, Aasa also defined a translation from annotated to unannotated
grammars, but this translation follows a different, more complicated design, an opinion we share
with Danielsson and Norell [20]. Our grammar elaboration re-centers Aasa’s precedence weights
via a novel bidirectional organization.

18

2.2.4 Error Handling

Besides recognizing and parsing correctly written programs, modern parsers are expected to help
developers track down and fix syntax errors. Here, syntax errors are operationalized as source
locations where the parser gets stuck. Most left-to-right parsers can detect and locate the first er-
ror without modification (though, as discussed in §2.2, this is not always the case for OP parsing).
The more challenging problem is to recover from each encountered error and continue parsing
to detect subsequent errors.

Most recovery methods attempt to repair the input text around the error, differing in what
repairs they consider and how they choose among them. The simple “panic mode” method [5, 33]
limits itself to repair by deletion, dropping tokens around the error until parsing can resume from
some prior state. While simple to implement, this method is liable to skip large regions of code,
as was illustrated in Fig. 1.2B, leaving the programmer without downstream semantic analysis in
those regions. To avoid this issue, more sophisticated methods [16, 27, 30] consider the full range
of possible repairs, including insertions as well as deletions, and pick one of least cost according
to a language-specific cost vector of tokenmodifications or else textual edit distance. Most similar
in spirit to our work is the FMQ method [28]—defined for a different class of top-down parsing
methods not discussed here—which performs repairs using only insertions. Fischer et al. [28]
defined the insert-correctable class of grammars against which any input text can be repaired
by insertions to a grammatical form. meldr’s injection of additional obligation forms (Fig. 5.23)
automatically promotes every grammar to be insert-correctable.

Across their variations, these prior repair-based error-handling methods limit themselves to
purely textual repairs. This can lead to a combinatorial explosion in the space of possible insertion
repairs, as illustrated in Fig. 1.2C. While these repairs can be enumerated efficiently in practice
[16, 25], most prior work does not consider the question of how to effectively surface these re-
pairs to the programmer beyond ranked enumeration in a dropdown menu—some exceptions are
discussed in §2.2.5. Our approach is novel in its use of abstract syntactic obligations to compress,
rank, and communicate possible repairs.

Some recovery techniques [17, 57] avoid modifying the input text entirely. Instead, they par-
tition the input into valid substrings of the language of maximal length and report the partition
points as the locations of syntax errors. This approach avoids the problem of choosing the correct
repair and the possibility of a wrong choice leading to cascading spurious errors, but at the cost
of not producing a parse tree in the presence of errors and thereby disabling downstream anal-
yses. Perhaps for this reason, noncorrecting methods like these have not reached mainstream
adoption.

Error-handling parsing and structure editing are kin in their goals of maximizing structure, but
emphasize quite different aspects of the design/technical problem space. Our prior emphasis on

19

structure editor design led here to a unique approach to error-handling parsing, one that builds on
the underexplored symbol-based perspective of OP parsing (driven by symbol-to-symbol prece-
dence comparisons), as opposed to the predominant item-based perspective ofmethods like LL/LR
(where items refer to points in between the symbols of a production rule, used to define the states
of handle-finding automata). The symbol-based perspective comes with design advantages, sim-
ply because tokens provide more visual surface area to decorate than zero-width items—it is, in
our opinion, much easier to display and describe molds to the programmer than it is to display
and describe items and automaton states.

2.2.5 Incremental Parsing

So far, I have discussed batch parsingmethods, where the parser starts from scratch on a sequence
of terminal leaves. An incremental parser [23, 65] attempts to minimize repeated work between
successive edit states by reusing as much of the previous parse tree as possible. The schematic for
its operation is almost the same as the one for batch parsing in Fig. 2.4—the only change is that
the yet-unshifted terminal leaves may now be arbitrary parse trees, deemed potentially reusable
from the previous edit state, and possibly containing user modifications that need to be revisited
and reparsed. Additional machinery determines when a parse tree can be reused (i.e. shifted as
is) and, if not, breaks it down into a sequence of constituent subtrees for subsequent processing.
Wagner [64] developed incremental algorithms for LR and GLR parsing—later fixed and extended
by Diekmann [23]—that live on today in Tree-sitter, a popular incremental parsing library [1].

Besides minimizing repeated work, an incremental parser also supports history-sensitive error-
handling [23, 66]. The idea is simple: not every user modification needs to be structurally in-
corporated into the parse tree, and unincorporated modifications are decorated as errors. Once
modifications may persist unincorporated, questions arise as to when it becomes appropriate to
incorporate them and how to efficiently determine the relevance of other modifications. Wag-
ner and Graham [66] and Diekmann [23] describe methods for isolating errors within containing
parse trees (identified using the previous parse tree), such that the incremental parser may ignore
the error when processing modifications outside of the isolated tree. Additional techniques are
needed to incorporate legal modifications performed within an error’s isolation tree.

The editing models of the tylr series also converge on incremental parsing with history-
sensitive error-handling. The main difference lies in our recovery strategy and use of obligations.
WhereWagner andGraham [66] uses a purely deletion-based recovery strategy that ignores some
user input, we use a purely insertion-based recovery strategy that incorporates all user input and
completes it using obligations.

20

CHAPTER 3

tiny tylr: A Tiny Tile-Based Editor

Preface

The first incarnation of tylr emerged from my earlier efforts to improve the structure editing
experience in Hazel. When I started that work in 2019, Hazel had been designed as a simple
and fairly standard tree-based structure editor. One deviation was how it directly modeled in-
fix operator sequences in the syntax tree in order to simplify left-to-right insertion, while an
operator-precedence parser produced the fully structured tree as needed. Left-to-right entry of
simple operator sequences felt good, but I would start to feel trapped as soon as I introduced
any multi-delimiter forms, especially when trying to refactor them. I wanted to extend to refac-
toring multi-delimiter forms some of the linear editing flows available for transcribing operator
sequences. The challenge was doing this while maintaining a continuously well-structured edit
state as required for Hazel’s corresponding semantic guarantees (cf. end of §2.1.2).

Figure 3.1: Early mockups of restructuring mode in Hazel

This motivated an early concept I called node staging—wait, no—restructuring mode. Illus-
trated in Fig. 3.1, this mode would let the programmer move a single delimiter of a form at a
time, with movement restricted to syntactically valid positions for the delimiter. Generalizing
this feature over the growing Hazel language, then to moving arbitrary ranges of tokens, led to
the concept of tiles as a generic way to model linearly arranged syntactic structures, determine
valid movements/relocations among them, and inform subsequent hole-based repair. Meanwhile,

21

Figure 3.2: A high-level schematic of the concepts of tile-based editing. A tile-based editor operates on three levels
of structure: terms, which follow the abstract syntax of the language; tiles, which correspond to groups of matching
delimiters; and shards, which correspond to individual tokens and delimiters. Terms disassemble into tiles, tiles
into shards as needed to accommodate user actions; meanwhile, system aids assist and guide user actions to ensure
shards reassemble back to tiles, tiles back to terms.

holes were generalized to grout to account for the various kinds of sequential inconsistencies that
can arise between neighboring tiles.

Interested readers may play with tiny tylr at https://tylr.fun/tiny, the source of all
screenshots in this chapter.

3.1 Contributions

A tile-based editor visually organizes projected tokens into hierarchical structures of three dis-
tinct strata depicted in Fig. 3.2: terms, tiles, and shards, ordered high to low. Higher structures
may be disassembled (i.e. serialized) into lower structures as needed when the user’s selection
boundaries cut across the higher structure’s token range. Meanwhile, lower structures are op-
portunistically reassembled (i.e. parsed) into higher structures in and around the user’s selection
as it grows and shrinks.

This chapter contributes tiny tylr, a tiny tile-based editor that concretely demonstrates these
unique affordances. After an overview of tiny tylr’s design, I present the results of a lab study
where participants performed simple code transcription and modification tasks using tiny tylr
as well as a text editor and JetBrains MPS, state-of-the-art in keyboard-driven structure editing.
I found that participants using tiny tylr completed some modification tasks significantly more
quickly than when using MPS, particularly on those tasks where they made use of tiny tylr’s
selection expressivity. I further observed that participants using tiny tylr occasionally outper-
formed themselves on similar tasks using a text editor, but were in general slowed by a number
of limitations in our current design and implementation. I discuss these limitations and con-
clude with future research and design directions for further improving the usability of tile-based

22

https://tylr.fun/tiny

editing.

3.2 Design Overview

tiny tylr is a minimal prototype of tile-based editing, optimized at this stage for exposition
rather than usability as a practical authoring tool. Its most salient limitations currently include a
single-line edit state, single-character variables and numbers, and single-key input for construct-
ing new forms. Nevertheless, it demonstrates uniquely flexible selection affordances compared
to term-based structure editing while still preventing structural violations.

To a first approximation, tiny tylr acts on lexical token sequences much like a text editor
acts on character sequences. Using keyboard input, the user moves a cursor to positions between
tokens, where they may insert and remove tokens, mark selection boundaries of arbitrary ranges,
and ‘cut’ selections to ‘paste’ them elsewhere. Unlike a text editor, tiny tylr assists and guides
these interactions to ensure that every edit state, upon pasting, can be reassembled into a well-
formed term.

This assistance is divided into two independent subsystems that may be understood as oper-
ating at distinct levels of tiny tylr’s structural strata, as shown in Fig. 3.2: the grouter, which
aids the reassembly of tiles into terms (§3.2.1); and the backpack, tiny tylr’s spiritual successor
to the text editor’s clipboard, which guides user movement to ensure proper reassembly of shards
into tiles (§3.2.2).

3.2.1 Terms ⇌ Tiles: The Grouter

Panning the cursor over a program in tiny tylr reveals its term structure, as depicted in Fig.3.3a,
which follows the abstract syntax of a simple functional language. tiny tylr indicates each term
with a convex hexagonal outline, within which it highlights the term’s constituent tokens. The
visual nesting between terms reflects their strictly hierarchical organization.

Selecting the range encompassing the first term in Fig.3.3a reveals the term’s disassembly into
a sequence of tiles, as shown in Fig. 3.3b. Each tile consists of a complete set of matching tokens
(e.g. the tokens let, =, and in of the first tile) coupled with the terms those tokens delimit on
both sides (e.g. the bound variable f and its definition as an anonymous function that returns the
sum of its arguments). Unlike the strictly convex terms, the tips of a tile may each be convex or
concave (e.g. the first tile has a convex left tip and a concave right tip). The different configu-
rations of a tile’s left and right tips indicate its syntactic role as an ⟨operand⟩, ⟨prefix operator⟨,
⟩postfix operator⟩, or ⟩infix operator⟨.

Via operator-precedence parsing, a sequence of tiles reassembles into a valid term if and only

23

(a)

(b)

Figure 3.3: Screenshots of tylr showing a program’s (a) term and (b) tile structure.

if the tiles fit together into a convex hexagon; that is:

(1) consecutive tiles fit together, i.e. one tile’s convex tip meets the concave tip of the other; and

(2) tiles at the ends have convex outer tips.

In order to maintain these conditions of fit and ensure proper term reassembly, tiny tylr is
equippedwith a subsystemwe dub the grouter. Invoked immediately after each usermodification,
the grouter inspects the modification site and inserts or removes system-privileged structures,
collectively called grout, that act as connecting glue between otherwise ill-fitting tiles.

For example, consider the sequence of edit states shown in Fig. 3.4a, where the user modifies
the program in Fig. 3.3 by multiplying the function application f[2, 3] by 4. Upon the user
inserting the operator *, the grouter inspects the affected tile sequence; identifies that the last
tile has a concave right tip, which violates condition (2); and repairs the edit state by inserting
grout to its right. Subsequently, when the user inserts 4, the grouter identifies that the affected
sequence once more satisfies the conditions of fit, and removes the now excess grout.

Grout elements come in two varieties: convex and concave. Convex grout, such as that in-
serted and removed in Fig. 3.4a, succeed the familiar concept of holes [54] in term-based structure
editors. Meanwhile, concave grout model infix operator placeholders between yet-to-be-adopted
operands. For example, consider the edit state sequence shown in Fig. 3.4b, where the user press
Backspace to the multiplication operator * inserted in Fig. 3.4a. Upon deletion, the grouter iden-
tifies a violation of condition (1) and repairs the edit state by inserting concave grout between the
orphaned operands. As discussed in §2.1.2, if we were to perform the same edit in a term-based

24

(a)

(b)

Figure 3.4: The grouter in action, invoked (in magenta) by tylr after every user modification (in orange). We show
the underlying tile structure rather than the default term structure for expositional clarity.

25

(a) If the backpack is balanced, i.e. carries only complete tiles,
then the user may move freely.

(b) If the backpack is imbalanced, i.e. carries unmatched shards, then the user may only traverse past balanced
ranges.

Figure 3.5: The backpack in action, guiding user movement based on its contents.

26

editor with only the usual notion of holes, the editor would need to choose one of the orphaned
children, f[2, 3] or 4, to remove along with the parent; with concave grout, tiny tylr can save
both.

3.2.2 Tiles ⇌ Shards: The Backpack

tiny tylr features a second subsystem, called the backpack, that operates independently from
the grouter. Upon making a selection, the user may pick it up into the backpack and put it down
elsewhere, much like a text editor user uses the clipboard to cut and paste. Unlike the clipboard,
the backpack is a visible component attached to the cursor. Moreover, it is structure-aware and
guides user movement based on its contents to ensure they are put down in reasonable positions.

Fig. 3.5 shows how the backpack could be used to complete one of the tasks we assigned our
study participants. 4 out of 11 participants completed the task using an edit sequence like the one
shown in Fig. 3.5a: upon selecting the applied function arguments, they picked up the selection,
moved right twice, and put it down. While term-based structure editors often provide cut-and-
paste affordances, such a workflow would be impossible in that setting, since the selected tiles
do not alone form a complete term—indeed, we observed participants particularly struggle to
complete the same task with a term-based editor because of this limitation (§3.3.2).

Sometimes even more selection granularity may be desirable. Consider an alternative ap-
proach to completing the same task, shown in Fig. 3.5b, taken by another 4 of our study partici-
pants. They began this edit sequence by selecting the closing brackets, thereby disassembling the
function application tiles into shards: the individual matching tokens that comprise a tile. They
then picked up this selection, moved left twice, and put it down. Whereas in Fig. 3.5a the back-
pack’s contents were balanced i.e. had no unmatched shards, in this case the backpack’s contents
were imbalanced.

Text editing programmers may be familiar with a feeling of tension that comes with manip-
ulating such selections, given the possibility of miscounting delimiters and putting them some-
where that breaks the well-nested structure of their program. In a tile-based setting, the backpack
relieves this burden by steering the user’s cursor movement such that it can only move past bal-
anced ranges if the backpack is imbalanced, ensuring that the result of unloading backpack can
be reassembled into well-nested tiles. Moreover this may lead to efficiency gains: while both edit
sequences in Fig. 3.5 take 4 user actions, (b) requires only 2 steps of movement to make the initial
selection, whereas (a) requires 16.

3.3 Evaluation

27

expr 𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ (𝑒)
∣ \ 𝑥 { 𝑒 } ∣ 𝑒[𝑒]
∣ let 𝑥 = 𝑒 in 𝑒
∣ 𝑒 * 𝑒 ∣ 𝑒 / 𝑒
∣ 𝑒 + 𝑒 ∣ 𝑒 - 𝑒
∣ 𝑒,𝑒

num 𝑛 ∈ {0 − 9}
var 𝑥 ∈ {a − z}

(a) The binary operators are arranged into rows ordered by their operator precedence.

(* A: bind to a variable and use *)
(* A-t *) \ x { let i = n * n - 8 in x/i }
(* A-m *) let f = \ x { let i = n * n - 8 in x/i } in f[n]

(* B: internalize bindings *)
(* B-t *) let f = \ x { 5/x } in let m = n + 1 in let y = (f[m]) in y/n
(* B-m *) let y = (let f = \ x { 5/x } in let m = n + 1 in f[m]) in y/n

(* C: extract a helper function *)
(* C-t *) (g[a] * h[b] + c * r[x * x], g[a] * h[b] + c * s[y * y])
(* C-m *) let f = \ n { g[a] * h[b] + c * n } in (f[r[x * x]], f[s[y * y]])

(* D: transfer arguments *)
(* D-t *) f[g[h[x * x][y * z - y][z * y - z]]]
(* D-m *) f[g[h[x * x]]][y * z - y][z * y - z]

(b) The eight tasks are grouped into four pairs labeled A, B, C, D. Each pair consists of a transcription task (A-t, B-t,
C-t, D-t) followed by a modification task (A-m, B-m, C-m, D-m).

Figure 3.6: The textual syntax of Lamb (a) and the editing tasks in Lamb we assigned our participants (b).

28

To investigate tiny tylr’s usability, we ran a within-subjects lab study in which participants
completed a series of short program editing tasks using VS Code, a text editor; a baseline term-
based editor we built with JetBrains MPS; and tiny tylr. We sought to answer the following
questions:

• Does tiny tylr help first-time users complete program editing tasks more quickly than with
another keyboard-driven but term-based structure editor? How does this performance com-
pare to their text editor performance?

• To what extent do users make use of tiny tylr’s selection expressivity?

3.3.1 Method

We recruited 11 participants (P1-P11, 5 female and 6 male, 𝜇 = 22.2 years old, 𝜎 = 2.9 years)
from students at the University of Michigan by posting in the university subreddit (r/uofm) and
in chat forums shared by computer science graduate students, as well as by emailing students
enrolled in the undergraduate course on programming languages. Because our tasks involved
editing programs in an expression-based language (e.g. OCaml, Rust, Scala, etc), we selected for
those with some prior exposure. Most participants reported less than a year of experience with
such languages but had otherwise substantial programming backgrounds (𝜇 = 6.8 years, 𝜎 = 3.3
years). Each participant was compensated $30 dollars for a 75-minute session.

Each study session consisted of three components, one for each editor. Each component con-
sisted of a 10-minute tutorial portion followed by a task portion, in which the participant com-
pleted small editing tasks with the given editor in an artificial expression-based language called
Lamb. We designed Lamb’s syntax, shown in Fig. 3.6a, to accord with tiny tylr’s prototypal
limitations.

Fig. 3.6b shows the eight editing tasks participants completed in each editor component. The
tasks were presented in four pairs in a randomized order for each participant-component. Each
pair (e.g. A) consisted a transcription task (e.g. A-t), where the participant transcribed a Lamb
program from scratch (after taking up to 30 seconds to read it); followed by a modification task
(e.g. A-m), where the participant modified their transcribed program (after taking up to a minute
to read the modified program). Within the limits of Lamb and tiny tylr, we designed our modi-
fication tasks to represent general code restructuring patterns one may encounter in larger-scale
settings. We intentionally chose non-minimal starting programs so as to disincentivize wholesale
deletion and re-transcription in modification tasks.

Every participant started with the VS Code component. We used its tutorial portion to in-
troduce participants to Lamb and to verify they understood its term structure before proceeding
to the structure editing components. Specifically, as we introduced Lamb’s syntax, we asked

29

Figure 3.7: Summary of the slowdowns participants experienced in each task when using a structure editor as
opposed to a text editor, where the slowdown is calculated as a participant’s structure editor completion time
divided by their text editor completion time. Each line segment corresponds to a participant; the left and right
endpoints indicate the participant’s MPS-vs-text slowdown and tylr-vs-text slowdown, respectively, on the x-axis-
labeled task.

participants to parenthesize all subterms in a few sample programs. We configured VS Code to
syntax-highlight Lamb expressions [14] and color matching brackets [26].

Participants were randomly assigned to an order for the subsequent MPS and tiny tylr com-
ponents. Both tutorials covered the basics of expression construction; automatic hole/grout in-
sertion and removal; and selection and cut-and-paste capabilities. The MPS tutorial additionally
covered MPS’s “Surround With” menu [49], a user-invoked dropdown menu that provides op-
tions for wrapping the currently selected program term in a new form. Using MPS’s grammar
cells system [63], we configured our MPS editor to support left-to-right insertion of operator se-
quences, including wrapping a term as the conclusion of a new let expression and as the function
of a new function application. In order to maintain parity with tiny tylr’s limitations, our MPS
editor used single-key inputs for constructing expression forms (e.g. = for a let expression, \ for a
lambda expression); variables were restricted to single characters; and the edit state was always
laid out in a single line.

We asked the participants to complete each task as quickly and accurately as they comfortably
could and recorded their screen during the tasks. We did not impose any time limits; no task
took more than 5 minutes. A few participants did not complete all tasks in their final component
because we ran out of time, and we discarded the data for the couple occasions the participant
accidentally refreshed the browser in the middle of a task. To keep our data well-matched, for
any missing or discarded data for a task, we discarded the corresponding data for the same task
in all components.

30

selection structure

term balanced imbalanced total

task

A-m 10 0 5 15
B-m 5 1 8 14
C-m 16 5 5 26
D-m 0 4 8 12
total 31 10 26 67

Figure 3.8: Counts of selections participants picked up into the backpack when using tylr to complete the mod-
ification tasks, broken down by task and the following structural categorization of the selected content: a term at
selection time (e.g. the selection in Fig. 3.3a), balanced but not a term at selection time (Fig. 3.5a), and imbalanced
(Fig. 3.5b).

3.3.2 Results

Our evaluation suggests that participants did indeed make use tiny tylr’s selection expressivity
and that this helped them complete some modification tasks more quickly than with MPS. On
other tasks, however, participants were slowed by a few limitations in tiny tylr’s current design.

Fig.3.7 summarizes the task completion timeswemeasured across all three editor components.
We treated the participant’s VS Code completion time for each task as a normalization factor and
focused our analysis on the relative slowdowns (or speedups) the participant experienced on the
same task when using one of the two structure editors, calculated as the ratio of their structure
editor completion time to their text editor completion time. By and large, participants were slower
with the structure editors than with text, which we expected given that the participants had no
prior experience with the structure editors. We are encouraged, however, to see that several
were faster on some transcription tasks, and a few were faster with tiny tylr specifically on
some modification tasks, though some of this may be due to learning effects from completing the
VS Code component first.

For each task, we used a paired 𝑡-test to check for significant differences between the base-2
logarithms of the structure editor slowdowns. We observed no significant differences between
slowdowns on the transcription tasks except for C-t, where we found that participants experi-
enced greater slowdown using tiny tylr than with MPS (𝑡 = 2.37, 𝑝 < 0.05, Cohen’s 𝑑 = 0.79).
We think this was largely due to an incidental limitation: Task C-t involved moving past 6 closing
brackets; meanwhile tiny tylr did not share with VS Code and MPS the ability to move past a
closing bracket by typing it, forcing users instead to reach for the right arrow key instead, fre-
quently after a pause to stifle their usual habit or undo their accidental insertion of a new pair of
brackets.

In the modification tasks, we found that participants experienced dramatically less slowdown

31

using tiny tylr over MPS on Tasks B-m (𝑡 = −2.51, 𝑝 < 0.05, Cohen’s 𝑑 = 0.83) and D-m (𝑡 =
−4.87, 𝑝 < 0.001, Cohen’s 𝑑 = 1.62). Notably these tasks correspond to those in which participants
made the most use of tiny tylr’s selection expressivity. Fig. 3.8 summarizes counts of selections
users picked up into the backpack during the modification tasks of the tiny tylr component,
broken down by task and structure of the selected content. Overall, more than half (36) of all
selections (67) picked up by participants fell into the balanced and imbalanced categories, i.e.
could not be specified in MPS. The same is true specifically of the selections picked up in Tasks
B-m (9 out of 14) and D-m (12 out of 12) respectively, which suggests that tiny tylr’s selection
expressivity was important for completing those tasks more quickly. After completing Task D-m
using the edit sequence in Fig. 3.5a, P10 remarked: “That’s exactly what I wanted to try to do in
the last one and then it didn’t work. It’s nice that we get both the structure but also like when
you do selections, like it works the way you expect it to, like it’s actually taking the characters
that you’re expecting... so this is great.”

We observed no significant differences between the structure editor slowdowns on Tasks A-
m and C-m; both columns in Fig. 3.7 show several participants experienced worse slowdowns
with tiny tylr than with MPS. On these tasks, we observed many participants get slowed by
prototypal limitations of tiny tylr’s backpack system. Amajor limitation is that the user cannot
insert and remove forms as usual when they have something in the backpack, as one can with the
clipboard in VS Code and MPS. Several participants forgot about this limitation when completing
Task A-m with tiny tylr: they started by picking up the starting program and attempted to
construct a let expression, only to be reminded by tiny tylr’s interface that this is not possible.

Another, more subtle breakdown was caused by the backpack’s movement behavior chang-
ing dramatically given small changes in the picked-up selection. For example, consider the two
edit sequences shown in Fig. 3.9. In the first sequence, the picked-up selection is balanced, so
subsequently the user may move freely, in particular into the let definition where they intend to
put down the selection. Now suppose the user accidentally overselects the opening parentheses
as well, as at the start of the second edit sequence. In this case, because the backpack contents
are imbalanced, the user finds they cannot enter the let tile as intended. We observed a few
participants get confused after making the same mistake when completing Task C-m with tiny

tylr.

3.3.3 Limitations

Our study had several limitations. Our task design was constrained by tiny tylr’s prototypal
nature; the editing tasks were small, synthetic, and given on single lines in an artificial language
with unfamiliar syntax. The measured times record participants’ first-time use of both structure

32

(a)

(b)

Figure 3.9: Two similar edit sequences showing the error-proneness of strictly backpack-guided movement. Intend-
ing to perform the first edit sequence in 3.9a, where the picked-up selection is balanced, the user may accidentally
overselect and pick up an imbalanced selection, which dramatically changes the user’s subsequent allowed move-
ment.

33

editors and do not reflect optimal performance.
It is possible to engineer more ergonomic structure editors with MPS than the one we built

and evaluated in this study. Part of the limitations of our editor were to maintain parity with
tiny tylr’s limitations, as described in §3.3.1. In general, it is possible to adjust the language
grammar to improve an MPS editor’s selection expressivity. Our editor directly implemented the
expression structure of Lamb, as given in Fig. 3.6a, which for example makes it impossible to
select a let binding independent of its conclusion (e.g. let x = 1 in in let x = 1 in x);
this would be possible if instead we introduced a distinct expression block sort consisting of a
sequence of let bindings and expression lines, each individually selectable in this form. We view
such grammatical adjustments as ad hoc approximations of the generic disassembly of terms into
tiles in the tile-based setting, and sought to focus our comparison on pure term- and tile-based
editing.

3.4 Future Work

Efficient and easy-to-use structure editing has been tantalizingly out of reach for many decades.
This paper highlights and targets the central tension between consistently available hierarchical
structure and flexible editing of its linearized representation. Our proposed solution, tile-based
editing, navigates this tension by operating on a broader class of structures than traditional term-
based editing, allowing disassembly of hierarchical structures while ensuring proper reassembly.
Our user study of tiny tylr, a tiny tile-based editor, showed that users made frequent use of this
structural flexibility, and that this flexibility helped them complete some code restructuring tasks
significantly more quickly than with a traditional term-based structure editor. We are encouraged
by these results, although our study was limited due to tiny tylr’s prototypal nature. In future
work, we plan to scale up tile-based editing so that we may use and evaluate it in more realistic
settings.

This involves two sets of challenges. The first centers around scaling up basic editing affor-
dances, such as multi-key input, multi-character tokens, multi-line layout, as well as lifting the
restrictions imposed by tiny tylr’s current backpack system. The second centers around scaling
up to more realistic languages featuring multiple sorts as well as tokens shared across different
syntactic forms. We are currently exploring a new tile-based system aid that is capable of “re-
molding” tiles, as well as a sort system that allows for sort inconsistencies much like Hazelnut
[53] allows for type inconsistencies. In addition, we hope to generalize our approach by investi-
gating which grammar classes are suitable for tile-based editing, leading ultimately to a tile-based
editor generator. If these challenges can be overcome, we hope to achieve a generic approach to
structure editing that compromises virtually none of the fluidity and familiarity of text editing.

34

CHAPTER 4

teen tylr: Gradual Structure Editing with
Obligations

Preface

tiny tylr demonstrated a unique approach to structure editing, but its minimal, prototypal na-
ture significantly limited its use and evaluation. Andrew Blinn and I sought to change that as we
developed the next iteration, teen tylr. teen tylr largely adheres to the original term-tile-shard
hierarchy introduced by tiny tylr, but situates it in a much more practical authoring tool. As of
this writing, teen tylr continues to power the Hazel editor and its wide range of language and
editor experiments.

Besides the obvious upgrades in scale (e.g. to multi-character tokens, multi-line layout), teen
tylr boasts a more flexible, non-modal backpack system. Rather than restricting movement to
syntactically valid targets to put down its contents like tiny’s, teen’s backpack simply monitors
whether the current position is a valid target and prevents unloading if not. Where tiny’s back-
pack could only handle one set of matching delimiters/selections at a time, disabling selection
until it was empty, teen’s backpack can grow a stack of any number of sets of matching delim-
iters/selections, either put there by the programmer or populated automatically as new matching
requirements occur. Thanks to these simplifications, and the more practical scale, our study of
teen is significantly more informative than the one for tiny.

Interested readers may play with teen tylr at https://tylr.fun/teen, the source of all
screenshots in this chapter.

4.1 Contributions

We propose a new paradigm for structured code editing, called gradual structure editing, that aims
to resolves the three problems of selection expressivity, delimiter matching, and termmultiplicity

35

https://tylr.fun/teen

Figure 4.1: A high-level schematic of the concepts of tile-based editing, this chapter’s realization of gradual struc-
ture editing.

(§2.1.2). The organizing principle is to permit local disassembly of hierarchically-structured terms
to their projected components as needed to resolve the selection expressivity problem, as well as
insert and delete these components individually. After each change, the system analyzes the
locally linear structure to generate a set of syntactic obligations that, once discharged, guarantee
reassembly to a complete term. Syntactic obligations generalize holes, which can be understood
as obligating term insertion, to include matching- and multiplicity-related obligations.

We call this chapter’s particular realization of gradual structure editing tile-based editing, be-
cause disassembly proceeds through three distinct strata—terms, tiles, and shards, ordered high to
low as depicted in Fig. 4.1 and detailed in §4.2. Disassembly to lower structures occurs when the
user’s selection boundaries cut across the linear span of the higher structure, thereby address-
ing the selection expressivity problem. For example, the depicted selection (2 + 3) * (middle
left) reveals the containing term’s disassembly into its constituent tiles; similarly, the selection)

(lower left) reveals the containing tile’s disassembly into its shards, i.e. its matching delimiters.
After insertion or deletion, syntactic obligations are generated to ensure eventual reassembly

of any remaining lower structures. This bookkeeping is managed and presented by two indepen-
dent subsystems operating at distinct levels of the structural strata.

1. The backpack scaffolds reassembly from shards to tiles by managing matching delimiter obli-
gations, presenting these obligations in a pop-up stack attached to the cursor, as depicted in
the lower right of Fig. 4.1.

36

2. The grouter scaffolds reassembly of tiles into terms, managing multiplicity obligations by
inserting and removing grout. Grout are generated based on the requirements of neighboring
tiles, which are shaped on either end with a concave or convex tip to indicate whether or not,
respectively, delimits a child operand. Grout generalize holes to support both missing terms
(<1) and adjacent terms (>1); for example, the upper right of Fig. 4.1 shows a convex piece of
grout standing in for the missing operand 3, as well as a concave piece of grout connecting
the former operands of the missing operator *.

We have implemented tile-based editing in teen tylr, which is the source of all screenshots in
this paper. After introducing the design of teen tylr in more detail (§4.2), we present the results
(§4.4) of a lab study (§4.3) comparing text editing, MPS, and teen tylr on structurally complex
program editing tasks. We found that the problems of selection expressivity, delimiter matching,
and multiplicity helped explain the most common breakdowns participants encountered with
MPS. We further observed that teen tylr resolved the selection expressivity and multiplicity
problems, while our design of the backpack mitigates but incompletely resolves the matching
problem. Nevertheless, we found that participants achieved competitive performance using teen
tylr compared to text on most tasks and expressed largely positive sentiments toward its feature
set. We conclude with a discussion of design implications for future code editors and parsers.

4.2 Design Overview

We now give an example-driven overview of tile-based editing using teen tylr. Fig. 4.2 shows
a Camel program we asked our study participants to transcribe and subsequently modify, and
depicts how one participant completed the modification. We will describe different parts of this
edit sequence in more detail in this section as we introduce teen tylr’s features.

4.2.1 Terms, Tiles, Shards

Fig. 4.3a depicts a composite of teen tylr edit states with its cursor in various positions. At each
position, when there is nothing selected, teen tylr highlights the smallest containing term. Each
term is made up of a set of matching shards, the term’s hexagonally shaped delimiters, and the
delimited child terms, outlined to the left or bottom depending on their layout. For example, the
outermost indicated function term in Fig. 4.3a highlights its shards fun and -> and outlines its
argument pattern and body.

Selecting the function term reveals its disassembly into a sequence of tiles, shown in Fig. 4.3b.
Tiles are, collectively, in one-to-one correspondence with terms: each tile consists of the term’s
shards and the children they bidelimit (delimit on both left and right). For example, the function

37

Figure 4.2: A pair of editing tasks we assigned our lab study participants, consisting of a transcription task
(Panel A) followed by amodification task (Panel D), and the edit sequence by which participant P9 completed the
modification task using tylr (Panels B & C). Due to space constraints, the variable references center and p and
the argument to sqrt in Panels A & D are elided in Panels B & C. In Panel B, P9 begins binding a new variable dist
(B.1-3) to a newly inserted function taking arguments p1 and p2 (B.4-6). Subsequently, in Panel C, P9 selects and
cuts the sqrt expression and the two preceding let-lines (C.7-9), pastes them above the original function (C.9-11),
and completes the let-binding for distwith the concluding delimiter in (C.11-12). Finally, not shown, they modify
the variable references center and p to p1 and p2 and inserted a call to the newly defined dist function to arrive
at Panel D.

(a) Nested terms indicated by tylr at various cursor positions.

(b) A sequence of tiles produced by disassembling the function term.

Figure 4.3: Terms (a) and tiles (b) annotated with green borders.

38

tile includes the shards fun and -> and the bidelimited pattern center, p but does not include
the function body, because it is not delimited on the right. Instead, the body’s tiles are simply
adjacent to the function header in the tile sequence.

Tiles model unassociated operator sequences, where each tile is shaped at its tips to indicate
whether its an ⟨operand⟩, ⟨prefix⟨ operator, ⟩postfix⟩ operator, or ⟩infix⟨ operator. While contem-
porary structure editors like MPS make use of this sequential structure to ease linear insertion,
they do so emphemerally, such that the user cannot subsequently select arbitrary subsequences
after insertion. teen tylr resolves this limitation by directly manifesting the sequential structure
in the edit state as needed. Edit state C.8 in Fig. 4.2 shows P9 using this capability to select the
two let-bindings without their concluding body.

4.2.2 Terms ⇌ Tiles + Grout

Via operator-precedence parsing, a sequence of tiles reassembles into a valid term if and only if
the tiles fit together sequentially into a convex hexagon; that is:

(1) consecutive tiles fit together, i.e. one tile’s convex tip meets the concave tip of the other; and

(2) tiles at the ends have convex outer tips.

In order to maintain these conditions of fit and ensure proper term reassembly, teen tylr is
equipped with a scaffolding system we dub the grouter. After each user modification, the grouter
inspects the modification site and inserts or removes system-privileged structures, collectively
called grout, that act as connecting glue between otherwise ill-fitting tiles.

Convex grout succeed the familiar concept of holes in traditional structure editing, i.e. they
handle the situation where a term is expected but none is found. For example, when P9 selects
and cuts the sqrt expression in C.7-8 of Fig. 4.2, the grouter leaves behind a convex grout piece
in its place. Meanwhile, concave grout handle the situation whenmore than one is found, thereby
addressing the multiplicity problem. For example, when P9 pastes the sqrt expression in C.10-11,
the grouter inserts a concave grout piece to temporarily buffer the two terms on either side, which
P9 subsequently replaces with the in shard in C.12. Concave grout also make it straightforward
to define minimal, local deletions: recall how, in the upper right of Fig. 4.1, teen tylr is able to
preserve both orphaned children (2 + 3) and 4 upon removing their parent *, unlike MPS which
could save at most one.

4.2.3 Tiles ⇌ Shards + Backpack

Tiles may be further disassembled into their constituent shards, whose subsequent reassembly
is guided by a second system called the backpack. The backpack succeeds the familiar clipboard,

39

but extended in a few distinct ways. Two differences are most immediate. First, it is visible—edit
state C.11 in Fig. 4.2 shows how it appears as a yellow “balloon” tied to the cursor. Second, it
can carry multiple items, organized into a stack—for example, edit states B.1-6 show how the
backpack grows and shrinks as P9 inserts shard-by-shard, while C.7-9 show how P9 used the
backpack to pick up both the sqrt expression as well as the two preceding let-bindings.

The backpack is additionally co-managed by teen tylr to ensure that tiles are well-nested,
and that freshly inserted shards are not left unmatched. Consider the edit sequence in Panel
B of Fig. 4.2. When P9 inserts the first shard let (B.1), teen tylr recognizes it as a keyword
and populates the backpack with its matching shards = and in. After typing dist (B.2), P9 puts
down the head shard = (B.3) and goes on to insert the function tile (B.4-6), again supported by the
backpack, emerging carrying the final obligatory shard in. When they subsequently move inside
another tile to select the sqrt expression in C.7, the backpack turns transparent and inactive,
indicating that it would be structurally invalid to put down the in there.

This last example in C.7 reveals an overly conservative limitation of our current tile-based
editing ontology, which is that a tile’s shards are permanently matched and cannot be exchanged
with another tile’s shards, even a tile of the same form. One could imagine a variation of our
system that permits pasting the in-shard in C.7, matching it to let r =, while the in-shard
originally matched to let r = is re-matched to let dist =. Our study revealed that this indeed
posed a significant remaining usability problem (§4.4.2), and we discuss lifting this limitation in
§4.5.

4.3 Lab Study

We sought to empirically investigate the effect of the selection, multiplicity, and matching prob-
lems in a term-based editor, as well as the impact on user experience when those problems are
mitigated in a tile-based editor. To do so, we ran a within-subjects lab study in which partici-
pants completed a series of short program editing tasks using VS Code, a text editor; a baseline
term-based editor we configured with MPS; and teen tylr. We had the following questions:

Q1 When first-time users attempt structurally complex modifications with a term- or tile-based
editor, how does editor choice impact completion time, mental load, and code reuse, relative
to a text editor?

Q2 What mistakes and inefficiencies do first-time users experience with a term- or tile-based
editor? What aspects do they find most frustrating?

Q3 What aspects of term- and tile-based editing do first-time users find most empowering or
appealing?

40

expression 𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ (𝑒) ∣ [𝑒(; 𝑒)∗] ⋗ 𝑒(𝑒)
⋗ 𝑒 * 𝑒 ∣ 𝑒 / 𝑒 ⋗ 𝑒 + 𝑒 ∣ 𝑒 - 𝑒
⋗ 𝑒 |> 𝑒 ⋗ 𝑒(, 𝑒)+ ⋗ fun 𝑝 -> 𝑒
∣ let 𝑝 = 𝑒 in 𝑒 ∣ if 𝑒 then 𝑒 else 𝑒

pattern 𝑝 ∶∶= 𝑥 ⋗ 𝑝(, 𝑝)+

Figure 4.4: The concrete syntax of Camel, a simple expression-based language we designed for our lab study. Camel
is a near-subset of OCaml expressions and patterns—the single deviation, postfix parentheses instead of infix space
for function application, was to accommodate comparison with MPS, which has limited support for whitespace-
based syntax. The operator ⋗ indicates forms to its left have greater precedence than those to its right.

4.3.1 Participants

Because our study tasks involved editing programs written in an expression-based language, we
sought participants with some prior experiencewith such languages. We recruited 10 participants
P0-P9 (8male, 1 female, 1 unstated; ages 19-31 years, median 23.5 years) by posting on Twitter and
subreddits for OCaml (r/ocaml) and the authors’ institution, as well as emailing students recently
enrolled in the undergraduate programming languages course there. Most participants reported
substantial experience with expression-based languages (0.3-10 years, median 3.5 years). Eight
participants had some prior experience with structured editing interfaces, such as Scratch [44]
and ParEdit [13]; two of the eight had designed and implemented their own structure editors.
Each participant was compensated $40 for a 90-minute session of study tasks followed by a 10-
minute exit survey.

4.3.2 Tasks & Editors

The study tasks involved small program editing tasks in Camel, an OCaml-like expression-based
language whose syntax is given in Fig. 4.4. Fig. 4.2 and Fig. 4.5 together show the six editing
tasks participants completed with each editor, organized into three pairs: circle, line, and
transforms. Each pair consisted of a transcription task, where the participant transcribed a
Camel program from scratch; followed by a modification task, where the participant modified
their transcribed program (or variation thereof in the case of line) to a given goal program.
We designed our modification tasks to involve complex code restructuring patterns one may
encounter in larger-scale settings. We intentionally chose non-minimal starting programs so as
to disincentivize wholesale deletion and re-transcription in modification tasks.

We asked participants to complete the tasks with three different editors: VS Code, JetBrains
MPS, and teen tylr. We configured VS Code to syntax-highlight Camel code and otherwise
disabled other extensions. We configured MPS with its grammar cells system [63] to operate

41

Figure 4.5: Transcription-modification task pairs line and transforms. See Fig. 4.2 for the third pair circle.

42

on Camel programs, as shown in screenshots on the left. Gram-
mar cells enable some familar linear editing patterns, e.g. one may
type the keyword let as depicted in the top half to insert a new
let-binding above the others. Other operations, such as binding
an existing expression to a new variable, require selecting the ex-
pression and invoking MPS’s “Surround with” menu as depicted
in the bottom half; alternatively, one may cut the selection, insert
the let-expression, and paste back the selection at the desired lo-
cation. Our implementation of teen tylr at the time of the study
largely followed our presentation in §4.2, except that we had not
fully implemented the visual design for selections: selected ranges
were highlighted without showing their internal make-up of tiles

and shards. Moreover, at the time, teen tylr did not support mouse input. We discuss the po-
tential impact of these limitations in §4.4.4.

4.3.3 Procedure

We conducted the study remotely and recorded participants’ screens. Each session consisted of
three components, one for each editor. Each component consisted of a 10-minute tutorial portion
followed by the three task pairs in a randomized order.

Every participant started with the VS Code component. We used the tutorial portion of this
component to introduce participants to Camel and to verify they understood its term structure
before proceeding to the structure editing components. Specifically, as we introduced Camel’s
syntax, we asked participants to parenthesize all subterms in a sample program that included
all of Camel’s syntactic forms. While this imposed learning effects on task performance in the
subsequent components, there is a strong counteracting effect in the much greater familiarity
and skill participants had with text editing compared to MPS and teen tylr.

Participants were evenly split between different orders for the subsequent MPS and teen tylr
components. Both tutorials covered the basics of expression construction; automatic hole/grout
insertion and removal; and selection and cut-and-paste capabilities. The MPS tutorial addition-
ally covered the different approaches to inserting and deleting expression forms as supported by
grammar cells or otherwise using the “SurroundWith” menu. The teen tylr tutorial additionally
noted the backpack’s enforcement of permanent shard matching.

We sought to distinguish the time spent figuring out how to complete a task from the time
spent performing the edits, as well as minimize mistakes caused by misunderstanding of program
structure, so we asked participants to plan their edits before completing each task—this prepa-

43

ration time additionally served as an objective complement to their subjective reports of mental
load. When preparing for modification tasks, participants were encouraged to make selections
in the starting code to verify their understanding of selectable structures. We suggested partici-
pants take up to 1 minute to prepare for transcription tasks and up to 2 minutes for modification
tasks, but did not enforce these limits. We asked participants to complete each task as quickly
and accurately as they comfortably could.

After each component, participants were asked to reflect on their experience with the editor
and to compare it with any previous editors. Finally, after completing all components, partici-
pants completed a 10-minute exit survey.

4.4 Results

The lab study, administered by the second author of [47], produced roughly 15 total hours of
screen-recorded video. The first author segmented and reviewed the preparation and task por-
tions (4 hours) of these recordings in detail to study participants’ editing patterns, infer high-
level intent, and identify mistakes. Preparation time was measured as starting when participants
started reading each task description and ending when they said they were ready to begin, minus
any time spent on dialogue (e.g. to ask clarifying questions); task completion time was measured
as starting when the administrator gave a cue to begin and ending when the participant said
they were done. Intent was rarely ambiguous given both knowledge of the editor clipboard state,
always preceded by a visible selection, as well as the highly constrained nature of the tasks. Mis-
takes were identified by subsequent backtracking via undo and voiced expressions of uncertainty
or regret.

§4.4.1 summarizes our quantitative results. After noting likely effects and patterns, we elabo-
rate on specific causes in §4.4.2 and 4.4.3.

4.4.1 Completion Times, Mental Load, Code Reuse (Q1)

Given known limitations of null hypothesis significance testing [18], we base our analyses of time
measures on estimated effect sizes with confidence intervals [19]. Fig. 4.6 summarizes how long
participants took to prepare for and complete the tasks with each editor, and how these repeated
measures compare as ratios between teen tylr and the other two editors respectively. P1 en-
countered a crash when using teen tylr to modify the circle program, so we discarded this
measure and its corresponding ratios. We also omitted transcription preparation times because
participants generally took no additional time beyond reading the task description.

We observed quite similar transcription performance between editor pairs (tylr/Code and

44

Figure 4.6: Dot plots overlaid with 95% confidence intervals summarizing how long participants took to prepare for
and complete tasks with each editor. Each dot represents an individual participant measure. The top half shows the
raw task times; the bottom half shows the relative slowdowns/speedups participants exhibited on each task using
tylr compared to the other two editors. Confidence was calculated with the log of both measures to correct for
positive skew.

45

tylr/MPS) across the three tasks: all six estimates fall within relatively precise bounds ([0.8, 1.5]),
with all but one (tylr/Code on transforms) overlapping with equal performance. These results
are unsurprising given that all three editors facilitate familiar left-to-right transcription flows.

On the other hand, our results show that the choice of editor had clear impact on modification
preparation and performance, despite more imprecise estimates. In the case of tylr/Code, our es-
timates suggest some possible slowdown in both preparation (1.42, [1.02, 1.98]) and performance
(1.42, [1.04, 1.93]) for circle, while remaining inconclusive as to the effect direction for line and
transforms. Meanwhile, our estimates for tylr/MPS suggest speedups in both preparation and
performance on line (0.73, [0.55, 0.97] and 0.68, [0.47, 0.98]) and transforms (0.47, [0.25, 0.89]
and 0.21, [0.12, 0.37]), especially the latter.

These patterns were mirrored in participants’ subjective responses to our post-task survey,
summarized in Fig. 4.7. Plot B shows that median participants felt that all three editors were at
least somewhat efficient—perhaps due to the similar transcription performance across editors—
thoughwithmore disagreement in the case ofMPS. On the other hand, correlating to the observed
effects on preparation, Plot C shows they felt that teen tylrwas much less mentally demanding
to use than MPS, while still more demanding than VS Code. These patterns persist across their
opinions about the predictability of different edit operations (Plots E-G) and how much they felt
they had to delete and re-insert code when modifying (Plot D), i.e. how much difficulty they had
reusing existing code. Plot A suggests that participants overall preferred using VS Code and teen
tylr over MPS, but with wide divergence in opinions in the case of teen tylr.

Fig. 4.8 complements participants’ subjective responses about code reuse with objective mea-
sures on the modification tasks. We observed quite similar patterns of reuse between teen tylr

and VS Code, though with the subtle difference that reuse of matching shards in teen tylr are
strictly correlated due to the backpack enforcing lifelong matching (as discussed in §4.2.3). We
also observed overall less reuse with MPS than the other two editors. P0 opted not to reuse any
starting code for line with MPS, instead deleting it and transcribing the goal state; P8 did the
same for transforms. Some participants were forced to rewrite variable references like center
in line on account of MPS’s strict binding requirements, which would lead to variable references
disappearing from the clipboard when they deleted the original binding sites. Other notable dif-
ferences include the concluding function in circle; and two of the pipe operators in transforms,
as well as the first and third operands in the pipeline.

4.4.2 Mistakes, Inefficiencies, Frustrations (Q2)

The results of §4.4.1 indicate that participants struggled with MPS because of how mentally de-
manding it was to perform complex modifications, with notable impacts on both task perfor-

46

Figure 4.7: Box plots summarizing post-task survey responses.

47

Figure 4.8: Heat maps summarizing code reuse in the modification tasks, measured by the number of participants
that inserted via typing, rather than cutting and pasting, each token in the goal state. Delimiters auto-inserted by
MPS are excluded.

mance and code reuse even after an initial planning phase. P2 wrote, “MPS was EXTREMELY
cognitively demanding to me; it felt like I was solving tree-manipulating puzzles the entire time
I used it.” We found that the most common mistakes and frustrations with MPS related to the
three usability problems we described in §2.1.2.

The selection expressivity problem was mitigated by the preparation phases of our study pro-
cedure, but there remained some cases where participants began modification tasks with mis-
taken interpretations of the initial expression structure. For example, P0, P7, and P8 started mod-
ifying transforms thinking they could select individual lines, only to discover their selections
rounded up to the nearest prefix of lines. Five participants (P1, P3, P5, P7, P9) mentioned inex-
pressive selections when asked about frustrating aspects of MPS.

The most common class of mistakes related to the delimiter matching problem, in particular
when inserting and deleting multifix forms such as let _ = _ in _ and if _ then _ else _.
When inserting, participants frequently misremembered whether to rely on the side-wrapping
behavior via grammar cells or to use the Surround With menu, forcing them subsequently to
amend the mistake by either backtracking and applying the alternative action, or else cutting and
pasting the miswrapped child into its proper slot. We observed three participants (P0-1, P9) make
this mistake when modifying circle, six (P2-4, P5-7, P9) when modifying line. Similarly, when
deleting, some participants misremembered whether to rely on the side-unwrapping behavior of
MPS’s grammar cells, leading to accidental overdeletion of a bidelimited child; we observed three
participants (P5, P7, P9) make this mistake when modifying line. Four participants (P1, P4-5, P7)

48

referred to these delimiter matching issues as most frustrating.
Some avoided these matching-related decisions by conservatively stashing the child to be

wrapped/unwrapped in the clipboard before inserting/deleting, a more uniform but less efficient
manuever when side-wrapping/unwrapping is possible. These maneuvers led three participants
(P1, P4-5) to liken the experience to the Towers of Hanoi, a puzzle commonly used to exercise
recursive problem solving.

Meanwhile, the multiplicity problem led to breakdowns when pasting content with MPS,
where pasting to the left or right of a term overwrites it. While we explicitly noted this behavior
in our tutorial, it still occasionally led to surprises. For example, when modifying transforms,
P7 cut the expression spanning the first three lines of the start state, re-inserted shapes in its
place, and pasted the cut expression at the end of the last transformation (map(dilate(5))), un-
intentionally overwriting the transformation and having to re-insert it. Overall we observed two
participants (P0, P9) make this mistake when modifying circle, one (P7) when modifying line,
and four (P0-1, P4, P7) when modifying transforms.

Others were more cautious about this overwriting behavior, but instead reported that taking
this care was mentally taxing, especially given the combined pressures of the multiplicity and
matching problems on the clipboard. P2 wrote of MPS: “the worst part by far is the lack of
‘scratch’ workspace; in VS Code I can keep syntactically invalid code in the file, and in tylr I
can keep it in the backpack. In MPS I could only keep it in a single clipboard or some ad hoc
location in the AST." As a result, the most successful participants were those who adopted a
general strategy of inserting before deleting in order to expand their available scratch space for
subsequent clipboard-dependent modifications.

Participants using teen tylr did not experience the same scarcity of scratch space as with
MPS: its flexible selections reduced the number of selections necessary, concave grout made it
possible to paste without overwriting, and the backpack accommodated any number of remaining
selection needs.

On the other hand, several had trouble with the backpack enforcing well-nested and perma-
nent shard matching, as described in §4.2.3. For example, P0 started modifying line by selecting
the third and fourth lines let mark = \n fun center -> and attempting to paste them above
the second line if square then, but could not on account of the remaining in shard left behind
in the then-branch—completing such a maneuver requires cutting the in shard as well before
pasting. Despite this being mentioned in our tutorial, six participants (P0-1, P3, P5, P7, P9) en-
countered this issue when modifying line, one (P4) when modifying circle, and only one (P3
on line) successfully proceeded by picking up additional shards rather than backtracking and
re-strategizing. Seven participants (P0-2, P4-5, P7-8) mentioned this issue when asked what was
most frustrating about teen tylr.

49

This issue could get particularly confusing or frustrating when rearranging shards of tiles
of the same form, especially given the lack of visual distinction (e.g. using color) between the
different pairings. Some felt that this ran counter to their preferred workflows with text—for
example, P2 mentioned, “I commonly ‘reuse’ if/else tokens from nested/sequential if expressions
by deleting, say, the else branch of the first one and the then branch of the second one."—which we
also observed in code reuse patterns for VS Code in Fig. 4.8. These issues, combined with teen

tylr’s otherwise text-like experience, led P4 to describe it as feeling like “an uncanny valley
between structured editing and text... teen tylr mostly felt like a text editor... but it also isn’t
quite text—fixing parenthesization errors required that I think in terms of structure.”

4.4.3 Empowering or Appealing (Q3)

Despite these issues with the backpack, several participants expressed positive sentiment toward
its other aspects when asked about empowering or appealing aspects of teen tylr. P0 wrote,
“The backpack was pretty cool, and I definitely think it’s something I would make use of.” P2
enjoyed not needing to “worry about how to keep things in ‘scratch’ space like in MPS (which
is huge, to me)”. P9 appreciated the ability to “cut multiple things at once and then paste it later,
saving me time and context switch of going back and forth to copy and paste.” A few participants
expressed wishing to have the backpack available in MPS.

Others liked teen tylr’s visual design and grouting system based on convex/concave tips. P7
enjoyed the “curved cursor”, P1 the “arms on operators, concave and convex carets(!)”. P2 appre-
ciated having “the benefit of automatic hole insertion (which is also great)”, while P4 enjoyed the
“friendly feedback” of the grouting system: “Seeing unexpected placeholders sometimes pointed
out a syntaxmistake I hadmade, in amore pleasant way than a traditional squiggly red underline.”

When asked about empowering or appealing aspects of MPS, four participants (P1-4) ex-
pressed appreciation for the efficiency of selection when it aligned with their goals. Another
four (P1, P4-5, P9) cited the ability to jump to empty holes using the Tab key (which had not yet
been implemented in teen tylr at the time of the study). Others (P1, P3-4, P6-7) appreciated
the way MPS managed details like inserting matching delimiters and formatting whitespace (al-
though others (P0, P8) disliked this lack of control). P1 appreciated how these features added up
to an overall “clicky” experience.

4.4.4 Limitations

Our study had several limitations. Our results were affected by teen tylr’s prototypal nature: for
example, unlike the other two editors, teen tylr did not support mouse input at the time so we
asked participants to limit themselves to keyboard input, at which some expressed unfamiliarity

50

in the case of selection. Participants had only 30 minutes to get introduced to and complete
tasks with MPS and teen tylr respectively, so our results do not reflect optimal performance
or behavior, but rather trends and obstacles in first-time use. The editing tasks were few, small,
and synthetic, particularly the fact that participants were expected to reach a given goal state
verbatim and asked to plan their edits before performing them—while these constraints made
it possible for us to make detailed comparisons of the editors, they deviate from typical editing
practices in theway they split user attention between the goal and the edit state, as well as prevent
natural interleaving of problem solving, planning, and editing. Because all participants started
with the VS Code component and completed the same tasks in every component, learning effects
of the tasks impact our comparisons between VS Code and the other two editors—on the other
hand, they are counteracted by participants’ vastly greater experience with text editing. Finally,
participants were aware that the authors had designed and implemented teen tylr, which is
known to contribute to response bias [22].

It is possible to engineer more ergonomic structure editors with MPS than the one we built
and evaluated in this study by adjusting the language grammar to improve selection expressivity.
Our editor directly implemented the expression structure of Camel, which for example makes it
impossible to select a let-binding independent of its conclusion (e.g. let x = 1 in in let x = 1

in x); this would be possible if insteadwe introduced a distinct expression block sort consisting of
a sequence of let bindings and expression lines, each individually selectable in this form. We view
such grammatical adjustments as ad hoc approximations of the generic disassembly of terms into
tiles in the tile-based setting, and sought to focus our comparison on pure term- and tile-based
editing.

4.5 Discussion

While our study was small and not necessarily reflective of more proficient use, we think it con-
tributes new detail and insight into the general problem of structure editor usability, especially
in the context of keyboard-driven editing of nested expression structures. Our decomposition
of the problem into selection expressivity, multiplicity, and delimiter matching proved useful in
explaining common breakdowns our participants encountered when performing complex modi-
fication tasks with MPS. Particularly interesting was the interaction between the multiplicity and
matching problems, which in their competing demands for limited clipboard space led to less code
reuse and greater mental load with MPS. This phenomenon suggests that traditional keyboard-
driven structure editors, whether gradual or not, might substantially improve usability simply by
increasing the number of available slots in the clipboard system. Our study additionally high-
lighted the limitations of MPS’s grammar cells system, particularly in the way they bifurcated

51

insertion and deletion flows for larger mixfix forms common in expression-based languages like
OCaml.

Our study further suggested that our design of teen tylr successfully mitigated most but not
all of these issues, leading to improved modification performance, greater code reuse, and lower
reports of mental load compared to MPS. Our participants expressed appreciation for teen tylr’s
greater selection flexibility, the scratch space made available by the backpack, and its overall
visual indications of expected structure via convex/concave tips and grout. On the other hand,
several were surprised and confused by the permanent matching of shards, which stood in the
way of delimiter re-matching workflows they undertook with VS Code. Some also wished for a
more structured feel to the editing experience, whichwe attribute to lacking features at the time of
the study, such as system-managed whitespace and tabbing to holes, rather than any fundamental
limitation of our design. teen tylr is so named because of these remaining limitations, which
we construe as an awkward adolescent phase in its evolution from strict structure editing to
increasingly text-like editing.

Figure 4.9: A simpler ontology for tile-based editing

Lifting these limitations in ongoing work
has led us to simplify the tile-based editing
ontology, from Fig. 4.1 to something closer to
Fig. 4.9. Here, we rid ourselves of the previ-
ous concept of tiles as intermediate structures
of matching shards, and rename shards as tiles
in order to dispel the physical metaphor that
they are fractured components of a particu-
lar parent entity and should be reassembled
as such. Meanwhile, the grouter subsumes the
role previously handled by the backpack, such

that grout elements represent both multiplicity and delimiter matching obligations—in the latter
case, they would be additionally decorated with transparent text of the missing delimiters. The
backpack may continue to serve as a visual clipboard stack given its positive feedback, but would
no longer be system-managed or relevant to maintaining structural integrity. This new framing
seems suspiciously close to regular text parsing, which raises the question: are we back where we
started? Should we have saved our efforts on the notorious impracticalities of structure editing
and instead started with the well-established methods of text parsing?

We think our design efforts in the structure editing realm provide unique guidance for future
parser and editor designs, in ways not emphasized by current parsing literature. Error-handling
parsers are kin to structure editors in their aim to maintain continuous maximal structure for
downstream analyses and editor services, but typically define the problem starting from simple

52

blackbox assumptions about the textual interfaces they inhabit, leading to major shortcomings
in user experience. Error-handling methods consider strictly textual corrections, of which there
can be many possibilities even of minimal size—the burden of choice is then passed on to the pro-
grammer [16, 25], or otherwise one is chosen using ad hoc heuristics [30]. Morever, if a heuristic
choice is made, it is typically invisible to the programmer, leaving them only indirect clues in
the behavior of downstream editor services. The missing piece, we believe, is a complementary
system of user-facing obligations, much like the one developed in this work, that can stand in for
many possible completions while explicitly scaffolding nearby structures. Such a system would
be easily integrated with the graphical capabilities of modern text-based IDEs.

Another aspect of teen tylr’s design not emphasized in current parsing literature is the max-
imal assembly and visualization of gradual structures. While there exists work on incremental
parsing [65], it is only incremental in the sense that it isolates errors, while parsed structures
exist only at the granularity of complete AST nodes. In ongoing and future work, we aim to de-
velop general parsing methods for gradual structures that can be used to structure and visually
organize arbitrary user selections and edit states.

53

CHAPTER 5

tall tylr: Syntactic Completions with Material
Obligations

Preface

After accepting that I was in fact designing an error-handling parser, I discovered Floyd’s original
description of operator-precedence (OP) parsing [29] and realized the three precedence compar-
isons (§2.2.2) corresponded precisely to different parts of the shard-tile-term hierarchy (Fig. 4.1):
≐-comparisons governed shard-tile relationships; ⋖/⋗-comparisons governed tile-term relation-
ships. This observation encouraged me to shift to the simplified ontology in Fig. 4.9, with OP
parsing sending tiles up to terms.

I learned that OP parsing enjoys the bounded context property, meaning substrings can be
maximally reduced without backtracking, knowing only the delimiting tokens on either end.
Others refer to this property as “local parsability” and have used it to parallelize OP parsing
[7, 8]. I was interested in this property for editing and repair purposes, since this meant that any
range of tokens, independent of its larger context, could be maximally parsed as well as repaired
by completion.

I also learned that OP parsing imposes awkward constraints on its accepted grammars. The
requirement that the precedence table be conflict-free makes it difficult to reuse the same token in
different syntactic contexts, e.g. the minus symbol for both prefix negation and infix subtraction.
Meanwhile, I was grappling with the design of teen tylr’s molder (a system not discussed in
Chapter 4 because it was under development), used to promote textual input tokens to tiles by
assigning each a “mold” specifying its sort and operator shape—the challenge was picking among
multiple molds assignable to a token (e.g. prefix - vs infix - , expression (vs pattern (, etc).
A solution to the molding problem, I realized, was a way to sidestep the grammar restrictions
of OP parsing—by having the OP parser operate on (i.e. index its precedence table by) mold-
distinguished tiles rather than raw tokens, we avoid the conflicts that might otherwise arise if we
had to collapse together table rows/columns for tiles with the same token.

54

Altogether, we arrive at a unique conceptual division of the parsing process, dubbed tile-based
parsing: (1) top-down, context-dependentmolding that turns raw tokens into tiles; (2) bottom-up,
context-independent melding—what I call our error-handling generalization of OP parsing—that
repairs and reduces tiles to terms. This chapter contributes both a formalization of melding in
§5.3 and a discussion of how we implement in molding in tall tylr, in particular by minimizing
obligations.

Separately from its internal design around molding and melding tiles, tall tylr lets go of
teen tylr’s backpack in favor of ghosts of missing tokens that appear inline in the editor. The
benefit of this design is that there is no ambiguity, either to the system or the user, as to the current
program structure, unlike the noncommital backpack. The challenge is choosing reasonable,
predictable defaults, while also allowing the programmer to easily specify alternative choices.

Interested readers may play with tall tylr at https://tylr.fun/tall, the source of all
screenshots in this chapter.

5.1 Contributions

This chapter introduces tall tylr, a parser and editor generator that performs syntax repair by
syntactic completion (but not deletion) in a grammar enriched with obligations. This approach
could be used for determining the internal program representation within an editor or language
server (and indeed we expect this to be a common application of these ideas), but in this chap-
ter we go further to investigate the potential of materializing these obligations visually to the
programmer.

The screenshot in Fig. 1.4 shows how tall tylr repairs the program from Fig. 1.2A. On Line
1, tall tylr completes the user-inserted tokens fun (p1 p2 by materializing three obligations.
The first obligation, , is an infix obligation, i.e. it ranges over many possible infix operators in
pattern position. The remaining two obligations,) and =>, as well as those on Line 2, are ghost
obligations that serve to complete the partially written syntactic forms. The user can accept these
suggested locations by placing the cursor on these grayed out tokens and pressing the Tab key
or typing over them explicitly. If they wish to place them elsewhere, the ghost obligations can
be ignored and the user can type these obligations elsewhere; the ghost obligations are removed
when no longer necessary. On Lines 3 and 5, the user has omitted operands of various syntactic
sorts: one pattern, one type, and two expressions. tall tylr materializes operand obligations
(a.k.a. holes), written and colored by syntactic sort, to stand for the missing operands. Finally,
on Line 4, , is a sort transition obligation that indicates that there is a missing transition from
the pattern sort (in blue) to the type sort (in purple), because in this language the token -> can
appear only in types. This collection of obligations captures the different ways a program may

55

https://tylr.fun/tall

be incomplete. We expand on this visual taxonomy with additional examples from the user’s
perspective in §5.2.

Each token and obligation in tall tylr has a color and a shape, collectively amold. We refer to
a token or obligation equipped with a mold as a tile. In particular, the color indicates the syntactic
sort of term being considered. The shape indicates the hierarchical relationship between a token
and its neighbors. For example, the convex tip on the left of the let token in Fig.1.4 indicates that
it is the beginning of a term, and the concave tip on its right indicates that a child term is expected
to its right. Tips are visualized only for the term at the cursor (which is shown as a red angle in
Fig. 1.4 to conform to the shape of its adjacent token) to avoid the visual clutter associated with
nested block-based visualizations like those in systems like Scratch [15, 44].

Underlying this visual taxonomy is a novel theory of parsing that we dub tile-based parsing.
Tile-based parsing departs from the predominant item-based approach of the LL/LR methods and
instead builds on the token-based perspective of operator-precedence (OP) parsing as first de-
scribed by Floyd [29]. OP parsing enjoys the bounded context property [33] that makes it possible
to maximally parse any subrange of input knowing only its single-token delimiters, an attractive
property for modeling and analyzing program edit states. On the other hand, OP parsing is also
known for its limited grammar class, owing to difficulties reusing the same token in different
structural roles (e.g. - for both infix subtraction and unary negation). With tile-based parsing,
we propose splitting the overall problem of parsing into a top-down, context-dependent molder
that molds tokens into tiles, thereby distinguishing one structural use of a token from another;
and a bottom-up, bounded-contextmelder of tiles that extends OP parsing with obligation-based
syntactic completions.

Where error handling is typically an afterthought in existing parsing methods, it emerges in
tile-based parsing as a natural generalization of the core OP parsing method. In particular, we
generalize the single-step precedence comparisons in OP parsing to multi-step precedence walks
in melding, where the intermediate steps between the comparands constitute possible comple-
tions between them. In §5.3, we precisely specify melding as a parsing calculus called meldr.
In addition to precedence walks, we describe in §5.3.3.2 how meldr “injects” the given gram-
mar with additional grout forms that buffer the various inconsistencies that may arise between
bottom-up reductions and top-down expectations. Along the way, we present in §5.3.1 a new
parser-independent semantics for precedence annotations that generalizes and unifies prior ac-
counts.

meldr describes a nondeterministic parser of tiles, leaving many decisions up to the imple-
mentation regarding how tiles are molded and completions are chosen. In §5.4, we describe the
principle of minimizing obligations and additional heuristics that guide these decisions in tall

tylr. Finally, we evaluate our overall design with a user study in §5.5, investigating both code

56

insertion and code modification tasks. We discover our design of materialized obligations has
both promise and demand, but more design work is needed to give the programmer more control
over their placement and removal, especially when modifying existing code.

5.2 Design Overview

We begin with a user-facing summary of how tall tylr operates in various common editing
scenarios that demonstrate each form of obligation and how it is materialized to the user.

tall tylr is a parser and editor generator, i.e. it can be instantiated with various grammars.
In this section, we will write programs in a simple expression-oriented programming language,
Hazel [55]. Hazel is a near-subset of OCaml. One notable deviation is the use of postfix paren-
theses, 𝑒(𝑒), instead of infix space, 𝑒 𝑒 , for function application. This allows us to demonstrate
how tall tylr handles adjacency when whitespace is not accepted by the grammar as an infix
operator.

5.2.1 Operand Obligations

(a)
2
Ð→

(b)
␣
Ð→

(c)
+
Ð→

(d)
␣
Ð→

(e)
3 ␣ *
ÐÐÐÐ→

(f)

Figure 5.1: Basic expression insertion in tall tylr, demonstrating operand obligations and term decorations.

We begin with an empty editor buffer in Fig. 5.1(a). The root sort of Hazel is expression, and no
expression has been entered, so tall tylr repairs the empty buffer to a single operand obligation,
or simply hole, of that sort. Holes have convex tips on both sides, and the user’s caret (in red)
appears angled when on either side of the hole to emphasize its shape.

We next type the character 2 , which causes the hole to be “filled” with the number literal 2
in Fig. 5.1(b). Atomic operands also have convex tips on both sides. The sort (here, expression)
and the shape, i.e. the convexity of the tips on either side, are collectively called a mold and a
token or obligation equipped with a mold is called a tile. Visually, the editor indicates the sort of
a tile using color (here, expressions are grey) and the shape as shown above when the caret is on
the tile. Next, we type a space, ␣ , causing a space character to be inserted and the caret to shift
right in Fig. 5.1(c). The caret is no longer on a tile, so no visual indications appear and the caret
straightens out. Note that tall tylr only supports whitespace-insensitive grammars as of this
writing.

Next, we type + . In the Hazel grammar, the + token is only used as an infix operator, so

57

the molder assigns it a shape with concave tips on both sides, as shown visually in Fig. 5.1(d).
tall tylr must then perform syntax repair, because 2 + is not accepted by the grammar. To
do so, tall tylr performs a precedence walk. We will describe precedence walks precisely later
in the paper, but for now, let us develop some intuition. The idea is that we need to walk from
the current token, +, to the following token, which in this case is an implicitly included end-of-
buffer token. The only walk which allows this is one that traverses the right operand of the form
𝑒 + 𝑒 . Consequently, tall tylr repairs the syntax by inserting an expression-sorted operand
obligation, i.e. hole, as shown. For convenience, tall tylr also automatically inserts the space
between the operator and the hole. When we subsequently type ␣ , this automatically inserted
space is “consumed” rather than causing the insertion of a second space, as shown in Fig. 5.1(e).

Finally, we continue typing as shown, resulting in Fig. 5.1(f). Operator sequences are parsed
according to Hazel’s precedences and associativities. Notice in both Fig. 5.1(d) and Fig. 5.1(f) that
tall tylr underlines the associated operands when the caret is on a tile to visually communicate
the structure of the overall term. Notice also that completed terms are always convex on both
sides. Indeed, a user’s mental model can simply be that tall tylr inserts obligations to maintain
visual convexity.

5.2.2 Infix Obligations

(a)

ÐÐ→

(b)

Figure 5.2: Adjacent operands are connected by infix
obligations in tall tylr.

Starting from the editor state in Fig. 5.2(a), we
press backspace, , deleting the + tile. Textually,
this would result in the operands 2 and 3 appear-
ing adjacent to one another, which is not accepted
by the Hazel grammar. There are many possible
walks between adjacent terms—one for each of the infix operators—so tall tylr abstracts over
them by inserting an infix obligation, a.k.a. an operator hole, as shown in Fig. 5.2(b). Infix obliga-
tions have the lowest precedence.

One way to think about this mechanism is that operand obligations arise when one term is
expected but zero terms appear, whereas infix obligations arise when one term is expected but
many adjacent terms appear, as is often the case transiently during edits.

5.2.3 Molding Ambiguity

(a)
x ␣
ÐÐÐ→

(b)

Figure 5.3: The minus sign has multiple
molds. The mold is chosen to minimize obli-
gations.

The situation becomes more interesting if we use the -
token, because in the Hazel grammar this token can ap-
pear both as an infix operator (subtraction) and as a pre-
fix operator (negation). These correspond to different

58

molds. For example, in Fig. 5.3(a), the - token before y
is molded as a prefix operator, visualized with a convex
tip on the left and a concave tip on the right as shown.

If in this position, we type x followed by ␣ (to move the caret over the automatically inserted
space), tall tylr remolds the token into the corresponding infix operator as shown in Fig. 5.3(b).
The reason is tall tylr’s novel approach to disambiguation: tall tylr always selects the mold
which locally minimizes the number of obligations that must be inserted. Retaining the prefix
mold would have required also inserting an infix obligation, whereas the infix mold requires no
obligations.

Although this approach requires considering alternative tokenmoldings as tokens are encoun-
tered, we note that there are generally only a few tokens in a typical grammar which can have
multiple possible moldings. In the Hazel grammar, only - and (have this property. Traditional
operator precedence parsing cannot handle such grammars, but using a molder separate from
the core parsing algorithm that makes decisions based on repair costs allows us to overcome this
expressiveness limitation while retaining a relatively simple core parsing algorithm.

Note that formally, a mold is not simply a shape and sort, but rather a zipper into the grammar,
so the molder is also responsible for resolving other parsing ambiguities that might arise as well,
e.g. the famous “dangling else” problem in imperative languages. This is in contrast to approaches
where the parser resolves these ambiguities, e.g. by favoring shifts over reduces. We leave to
future work the problem of declaratively specifying disambiguation policies in this setting. We
only work with unambiguous grammars in the remainder of the paper.

5.2.4 Ghost Obligations

(a)
l e t ␣
ÐÐÐÐÐÐ→

(b)
x ␣ = or
ÐÐÐÐÐÐÐÐÐ→

(c)

Figure 5.4: Ghost obligations are inserted for mixfix forms in tall tylr.

So far, our examples have only used infix operators. Introducingmixfix operators requires enrich-
ing our language of obligations to handle mixfix delimiters that have not yet been inserted.

For example, starting from an empty buffer in Fig. 5.4(a), we can insert a let expression by
typing l e t ␣ . This causes insertion of ghost obligations, shown in gray in Fig. 5.4(b). These
obligations are again determined by computing a precedence walk from the inserted token to the
next token. When walking over a token that is not explicitly in the editor state, we can include
it as a ghost obligation in the corresponding completion. We again choose the completion that
minimizes obligations. The user can continue by entering a variable to fill the pattern hole at the

59

caret and, when they reach the =, they can either press tab, , or type over the ghost character(s),
here by entering = . Either choice will result in the state shown in Fig. 5.4(c). Note that the term
structure is visualized despite the missing delimiter.

When inserting a let expression in the middle of an existing program,
tall tylr needs to heuristically decide where to place the ghost obliga-
tions. The heuristic we use is is based primarily on newline placement in the
buffer, summarized by the example in Fig. 5.5. If we insert the let expression

(a)
l e t ␣
ÐÐÐÐÐÐ→

(b)

(c)
l e t ␣
ÐÐÐÐÐÐ→

(d)

Figure 5.5: Ghost obligation placement is chosen heuristically,
here based on newline locations.

(a)
i n ␣
ÐÐÐÐ→

(b)

Figure 5.6: Ghost obligations can be ignored and are cleaned up
if entered elsewhere.

immediately before existing code on the
same line, that code is placed in the first
child position of the same sort as shown
in Fig. 5.5(a-b). If instead we enter the let
expression on a blank line, subsequent
lines are placed in the last child position
of the same short as shown in Fig. 5.5(c-
d).

If the user’s intent differs from this
heuristic placement, they can ignore the
ghost obligations and insert the obliga-
tion explicitly where they intend. Given
the state in Fig. 5.6(a), if the user enters
in at the end of the buffer, tall tylr would clean up the ghost in and restructure the code as
shown in Fig. 5.6(b). Note that tall tylr automatically manages indentation.

5.2.5 Sort Transition Obligations
(a)

- > ␣
ÐÐÐÐ→

(b)

Figure 5.7: Sort transition obligations are needed when entering forms that are not sort-correct.

Some syntactic forms are legal only when entering terms of a particular sort. For example, in
Hazel, the arrow operator, ->, can only appear in types. If we enter the arrow in pattern position,
as shown in Fig. 5.7(a), tall tylr inserts obligations indicating that there needs to be a sort
transition from the pattern sort to the type sort, as shown in Fig. 5.7(b). If there were additional
text on the right that could be parsed as a pattern, a sort transition “back” on the right side would
also appear.

60

5.2.6 Unmolded Tokens

Figure 5.8: Unrecognized tokens are left unmolded,
and therefore cannot fulfill obligations.

Finally, some tokens are not recognized by
the grammar at all. To handle these, the
molder marks them as unmolded tokens and
treats them like whitespace or comments, i.e. they do not have a shape and so do not participate
in obligation insertion. For example, in Hazel, there is no ! token, so tall tylr simply marks it
in red and ignores it as shown in Fig. 5.8. Notice that no matter where the ! token appears, the
operand obligation remains unfilled.

5.3 meldr

We now present an error-handling parser calculus, called meldr, that describes how to complete
token sequences with additional tokens such that they can be parsed into grammatical terms.
Given a language grammar, whose terminal symbols we call tiles, we “inject” it with additional
grout forms that either stand in for missing terms or else wrap sort-inconsistent and extraneous
terms. From this grout-injected grammar, we generate an error-handling parser of tile sequences
that completes its input with grout and additional requisite tiles (manifesting as ghosts in tall

tylr (§5.2.4)) such that it can be parsed. By first relaxing grammaticality with grout, we ensure
that the generated tile parser is total over all inputs (Theorem 2).

As a substrate for these ideas, we generalize and unify two prior accounts of operator prece-
dence: Aasa’s semantics for precedence annotations in grammars [3] and Floyd’s seminal intro-
duction of operator-precedence parsing (OP parsing) [29]. The two works have related but com-
plementary scopes: Aasa describes how precedence annotations act as filters on the set of valid
derivation trees of the underlying grammar, as well as how to elaborate the annotated grammar
into an unannotated one; meanwhile, Floyd begins with an unannotated grammar and describes
how to derive a set of precedence relations between terminal symbols that can be used to steer a
bottom-up parser. In §5.3.1, we specify a new elaboration from annotated grammars G to unan-
notated grammarsH that simplifies Aasa’s version and generalizes it to allow for arbitrary mixfix
forms of varying sorts in G. To demonstrate correctness, we show in §5.3.1.4 that Floyd’s prece-
dence relations derived from H cohere as expected with the annotations in G (Theorem 1).

Next, we generalize OP parsing to handle errors using completion-only repair. After reviewing
Floyd’s original parsing method and noting the various ways that it can “go wrong” in §5.3.2, we
present our error-handling variation in §5.3.3. Among other things, our approach generalizes the
single-step precedence comparisons between neighboring input tokens that steer an OP parser
to multi-step precedence walks, where the intermediate steps constitute a possible completion

61

tile 𝑡 ∈ T
sort 𝑟, 𝑠 ∈ S ⊇ {𝑠}

symbol 𝑥,𝑦 ∶∶= 𝑡 ∣ 𝑠
regex 𝑔 ∶∶= 𝜖 ∣ 𝑥 ∣ 𝑔 ∣∣∣𝑔 ∣ 𝑔 ⋅𝑔 ∣ 𝑔∗

precedence 𝑚,𝑛, 𝑝,𝑞 ∈ P = N ⊔ {�,⊺}
PBG G ∈ S → P → 𝑔

Figure 5.9: Syntax of precedence-bounded grammars

terminal 𝜏 ∶∶= * ∣ 𝑡 ∣ (
nonterminal 𝜌,𝜎 ∶∶= 𝑝

𝑠
𝑞

symbol 𝜒 ∶∶= 𝜏 ∣ 𝜎
CFG H ∈ {𝜎 ⇒ 𝜒}

Figure 5.10: Syntax of elaborated
context-free grammars

between the tokens.
This approach alone is not quite sufficient to guarantee a successful parse across all grammars

and inputs—moreover, in practice, it would require the parser to make many heuristic choices
between structurally identical tile completions. To remedy these issues, we describe in §5.3.3.2
how to inject grout forms into the translated grammarH, which serve as fallbacks when no tile-
only completion exists, and also as natural defaults when there are many possible choices. Given
these fallbacks, we show that the generated parser is sound and total over all inputs (Theorem 2).

Notation Throughout this section, we will use the following notation for options and se-
quences given an element type 𝛼 .

option 𝛼? ::= ○ ∣ ●𝛼
sequence 𝛼 ::= ⋅ ∣ 𝛼𝛼

Given a judgment form 𝐽 𝛼 , we will write 𝐽 𝛼? to mean either 𝛼? = ○ or else 𝛼? = ●𝛼 such that
𝐽 𝛼 holds. Similarly, given 𝐽 𝛼 𝛽 , we will write 𝐽 𝛼? 𝛽? to mean either 𝛼? = ○ and 𝛽? = ○ or else
𝛼? = ●𝛼 and 𝛽? = ●𝛽 such that 𝐽 𝛼 𝛽 holds.

5.3.1 Elaborating Precedence Annotations

5.3.1.1 Precedence-Bounded Grammars

Our calculus is parametrized by a language grammar G in EBNF form with precedence anno-
tations, what we call in this work a precedence-bounded grammar (PBG). Compared to ordinary
context-free grammars, where precedence must be encoded in tedious towers of dependent pro-
duction rules, PBGs allow language forms of the same semantic sort (e.g. expressions vs patterns
vs types) to be organized under a single named entity, leading to more natural and concise gram-
mar definitions. By having the author explicitly specify the language’s sorts, PBGs also help us
generate a minimal set of semantically meaningful grout forms.

62

THZ = { let = in ... (,) }
⊔ { : 𝑣𝑎𝑟 (,) }
⊔ { Num (,) } SHZ = {ê, p,t}

GHZ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e ↦ 0 ↦ let ⋅ p ⋅ = ⋅ e ⋅ in ⋅ e
1≻ ↦ e ⋅ (+ ∣∣∣ -) ⋅ e
2≻ ↦ e ⋅ (* ∣∣∣ /) ⋅ e
3 ↦ 𝑛𝑢𝑚 ∣∣∣ 𝑣𝑎𝑟

∣∣∣ (⋅ e ⋅ (, ⋅ e)∗⋅)

p ↦ 0 ↦ p ⋅ : ⋅t
1 ↦ 𝑣𝑎𝑟 ∣∣∣ (⋅ p ⋅ (, ⋅ p)∗⋅)

t ↦ 0 ↦ Num ∣∣∣ (⋅t ⋅ (, ⋅t)∗⋅)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
Figure 5.11: A PBG GHZ for a small expression-oriented
language. Sorts consist of expressions (e) in grey, pat-
terns (p) in blue, and types (t) in purple. Tiles are dis-
tinguished by text, shape, and color-coded sort.

�e� �e1 + 2e� ∣ �e2 * 3e�

�e1 �e1 + 2e1 ∣ �e2 * 3e1

�e2 �e2 * 3e2

�e⊺

2e� 2e2 * 3e�

3e�

⊺e� let
�p� = �e� in 1e�

⊺e⊺
𝑛𝑢𝑚 ∣ (�e�)
(
�e� , �e�) ∣ ...

�p⊺ �p1 :
�t�

⊺p⊺ 𝑣𝑎𝑟 ∣ (�p�) ∣ ...
⊺t⊺ Num ∣ (�t�) ∣ ...

Figure 5.12: An excerpt of the CFG HHZ elaborated
(Fig. 5.15) from GHZ (Fig. 5.11). The production rules
are arranged and color-coded by whether each is
elaborated by subsuming reduction or by tightening.

The syntax of PBGs is given in Fig. 5.9. A PBG G is a partial function mapping a sort 𝑠 ∈ S and
precedence 𝑝 ∈ P to a regex 𝑔 over symbols 𝑥 , each either a tile 𝑡 ∈ T or a sort 𝑠 ∈ S . We assume
that S includes a designated start sort 𝑠 . We assumeP = N⊔{�,⊺} includes the natural numbersN
for precedence levels assigned in G as well as minimum � and maximum ⊺ precedence levels that
are reserved for internal use. We further assume that P is equipped with ordering relations ≺𝑠,≻𝑠
that abstract the details of associativity for each sort 𝑠 ∈ S . For example, 5 ≺e 5 would encode
that infix operators at precedence level 5 of sort e are right-associative—otherwise, outside of
reflexive pairs, these relations coincide with the usual ordering relations on natural numbers. For
all sorts 𝑠 ∈ S , we assume 𝑝 ≺𝑠 ⊺ ≻𝑠 𝑝 and 𝑝 ≻𝑠 � ≺𝑠 𝑝 for all other 𝑝 ∈ N.

Fig. 5.11 gives a concrete PBG GHZ encoding an excerpt of Hazel expressions, patterns, and
types, which we will use as a running example throughout the rest of the paper. Here, each
precedence level 𝑝 ∈ N of sort 𝑠 is optionally tagged with the relation ⊗ ∈ {≺𝑠,≻𝑠} that applies to
the reflexive pair 𝑝⊗𝑝 , if any—in this case, levels 1≻ and 2≻ of sort e are marked as left-associative,
i.e. 1 ≻e 1 and 2 ≻e 2. Meanwhile, the tiles are distinguished by their shape and color (gray for
expressions, blue for patterns, purple for types) in addition to their text.

A regex 𝑔 is either 𝜖 , matching the empty string; a symbol 𝑥 ; a choice 𝑔𝐿 ∣∣∣ 𝑔𝑅 ; a concatenation
𝑔𝐿 ⋅𝑔𝑅 ; or a Kleene star 𝑔∗. Its language J𝑔K of matching symbol strings 𝑥 is defined as follows:

63

J𝜖K = {⋅}
J𝑥K = {𝑥}

J𝑔𝐿 ∣∣∣ 𝑔𝑅K = J𝑔𝐿K ∪ J𝑔𝑅K

J𝑔𝐿 ⋅𝑔𝑅K = {𝑥𝐿𝑥𝑅 ∣ 𝑥𝐿 ∈ J𝑔𝐿K, 𝑥𝑅 ∈ J𝑔𝑅K}
J𝑔∗K = ⋃

𝑘∈N
J𝑔𝑘K

where 𝑔0 = 𝜖
and 𝑔𝑘+1 = 𝑔 ⋅𝑔𝑘

A G-form is a symbol string 𝑥 ∈ JG(𝑠, 𝑝)K for any 𝑠 ∈ S, 𝑝 ∈ P . To make use of operator-precedence
parsing techniques, we assume that every G-form is in operator form [29]:

Assumption 1 (Operator Form). There exist no sorts 𝑠𝐿, 𝑠𝑅 ∈ S and regex G(𝑠, 𝑝) such that
...𝑠𝐿𝑠𝑅 ... ∈ JG(𝑠, 𝑝)K.

In other words, every G-form may be written in the form 𝑠?0[𝑡𝑖𝑠?𝑖+1]0≤𝑖≤𝑘 . Greibach [32] showed
that every CFG can be normalized to a strongly equivalent one in operator form.

5.3.1.2 Context-Free Grammars

We assign meaning to the precedence-annotated grammar G by elaborating it to an unannotated
context-free grammar (CFG) H, whose syntax is given in Fig. 5.10. An elaborated CFG H is
a (possibly infinite) set of production rules 𝜎 ⇒ 𝜒 , each mapping a nonterminal 𝜎 to a finite
sequence 𝜒 of symbols—we will refer to 𝜎 and 𝜒 as the rule’s producer and product. Each symbol
𝜒 is either a terminal 𝜏 or a nonterminal 𝜎 . A terminal symbol 𝜏 is either a tile 𝑡 or a root delimiter,
* or (, marking the start or end of input. Meanwhile, a nonterminal is a precedence-bounded sort
𝑝
𝑠
𝑞 , where 𝑝,𝑞 ∈ P will serve as constraints from the left and right sides of the nonterminal in

the overall production tree. Fig. 5.12 shows an excerpt of the CFG HHZ elaborated from GHZ, the
process of which we discuss in §5.3.1.4.

We have specialized the symbols here to serve as our elaboration outputs, but their rewriting
semantics are standard: given a production rule 𝜎 ⇒ 𝜒 , we say that the symbol string 𝜒𝐿𝜎𝜒𝑅

produces the string 𝜒𝐿𝜒 𝜒𝑅 , written 𝜒𝐿𝜎𝜒𝑅 ⇒ 𝜒𝐿𝜒 𝜒𝑅 reusing the production rule syntax. A
production sequence 𝜒0 ⇒ 𝜒1 ⇒ ... from the designated start string 𝜒0 = *

�
𝑠
�(is called a

derivation; the language of a CFG collects all of its derivable strings.

5.3.1.3 Precedence Comparisons

Given a CFG, we may generate a collection of precedence comparisons that classify derivation
patterns between neighboring terminals. Each comparison 𝜏𝐿⊙𝜌?𝜏𝑅 means there exists a derivable
stringwith the substring 𝜏𝐿𝜌?𝜏𝑅 , which consists of neighbors 𝜏𝐿, 𝜏𝑅 that are either adjacent (𝜌? = ○)
or separated (𝜌? = ●𝜌) by a nonterminal 𝜌 . Floyd’s original definition [29] does not surface the
operator index 𝜌?, whose omission we will later show contributes to an unsound parsing method

64

comparison ⊙ ∶∶= ⋖ ∣ ≐ ∣ ⋗

𝜏𝐿 ⊙𝜌? 𝜏𝑅 𝜏𝐿 compares with 𝜏𝑅
(over 𝜌?)

Prec-LT
𝜏𝐿 ◽ 𝜎 𝜎 ⇒∗ 𝜌?𝜏𝑅 ...

𝜏𝐿 ⋖𝜌? 𝜏𝑅

Prec-EQ

𝜎 ⇒ ...𝜏𝐿𝜌?𝜏𝑅 ...
𝜏𝐿 ≐𝜌? 𝜏𝑅

Prec-GT
𝜎 ⇒∗ ...𝜏𝐿𝜌? 𝜎 ◽ 𝜏𝑅

𝜏𝐿 ⋗𝜌? 𝜏𝑅

Figure 5.13: Precedence comparisons

𝜏𝐿

𝜏𝑅 (let = in + * () 𝑛𝑢𝑚 : () Num

* ≐ ⋖ ⋖ ⋖ ⋖ ⋖
let ≐ ⋖ ⋖
= ⋖ ≐ ⋖ ⋖ ⋖ ⋖
in ⋗ ⋖ ⋗ ⋖ ⋖ ⋖ ⋗ ⋖
+ ⋗ ⋖ ⋗ ⋗ ⋖ ⋖ ⋗ ⋖
* ⋗ ⋖ ⋗ ⋗ ⋗ ⋖ ⋗ ⋖
(⋖ ⋖ ⋖ ⋖ ≐ ⋖
) ⋗ ⋗ ⋗ ⋗ ⋗

𝑛𝑢𝑚 ⋗ ⋗ ⋗ ⋗ ⋗
: ⋗ ⋗ ⋗ ⋖
(⋖ ⋖ ≐
) ⋗ ⋗ ⋗
Num ⋗ ⋗

Figure 5.14: An excerpt of precedence comparisons 𝜏𝐿 ⊙ 𝜏𝑅 for HHZ
(Fig. 5.12)

(§5.3.2), and whose use in our resolution we describe in §5.3.3. Until then, we will similarly omit
it from the notation 𝜏𝐿 ⊙ 𝜏𝑅—note this is different from assuming 𝜌? = ○, which we will always
notate explictly 𝜏𝐿 ⊙○ 𝜏𝑅 .

The comparison operator ⊙ ∈ {⋖,≐,⋗} indicates in what relative order the neighbors 𝜏𝐿, 𝜏𝑅
were first produced in the derivation. Fig. 5.14 shows an excerpt of the precedence comparisons
forHHZ (Fig.5.12). The derivation

�e�⇒ �e1 + 2e�⇒ �e1 + 2e2 * 3e� tells us + ⋖ * (“ + binds
less tightly than * ”) since + is produced before its neighbor * . Meanwhile, the derivation
�e� ⇒ ⊺e⊺ ⇒ (

�e�) tells us (≐) (“ (matches) ”) since neighbors (and) are
produced together. Keep in mind that the written order of arguments 𝜏𝐿, 𝜏𝑅 in each comparison
𝜏𝐿 ⊙ 𝜏𝑅 reflects their sequential order in the derived string, so we should not generally expect
𝜏𝐿 ⋖ 𝜏𝑅 to be equivalent to 𝜏𝑅 ⋗ 𝜏𝐿 , nor for ≐ to be symmetric.

5.3.1.4 Precedence Elaboration

Elaboration turns an annotated PBG G into an unannotated CFG H whose nonterminals inter-
nalize relevant bounding annotations. Governing its design is the expectation that precedence
comparisons 𝑡𝐿 ⊙ 𝑡𝑅 between tiles inH mirror, when relevant, numeric comparisons between the
tiles’ backing annotations in G (Theorem 1).

Theorem 1 (Annotation-Comparison Coherence). For all sorts 𝑠 , precedence levels 𝑝𝐿, 𝑝𝑅 , and tiles

65

𝑡𝐿, 𝑡𝑅 such that ...𝑡𝐿𝑠 ∈ JG(𝑠, 𝑝𝐿)K and 𝑠𝑡𝑅 ... ∈ JG(𝑠, 𝑝𝑅)K, the following equivalences hold:

𝑡𝐿 ⋖ 𝑡𝑅 ⇐⇒ 𝑝𝐿 ≺𝑠 𝑝𝑅 𝑡𝐿 ⋗ 𝑡𝑅 ⇐⇒ 𝑝𝐿 ≻𝑠 𝑝𝑅

To motivate our design (Fig. 5.15), it is instructive first to consider the issues with simpler
alternatives—in particular, elaborating to nonterminals with fewer than two bounds. If we elab-
orated the PBG G to a CFGH0 in which the nonterminals were plain unbounded sorts 𝑠 , the best
we could do is a trivial elaboration that simply ignores the precedence annotations in G:

H0 ≜ {𝑠 ⇒ 𝑥 ∣ 𝑥 ∈ JG(𝑠, 𝑝)K, 𝑝 ∈ P, 𝑠 ∈ S}
H0 allows for problematic derivations like e ⇒ ⟨e * e⟩ ⇒ ⟨⟨e + e⟩ * e⟩, problematic because it
witnesses the unwanted comparison + ⋗ * (“ + binds more tightly than * ”).

A better approach—similar in effect to that of Danielsson and Norell [20] and of Klint and
Visser [40]—would use singly-bounded nonterminals 𝑠𝑝 and limit their productions to G-forms
of equal or stronger precedence: H1 ≜ {𝑠𝑝 ⇒ ⌈𝑥⌉𝑝 ∣ 𝑥 ∈ JG(𝑠,𝑞)K, 𝑝 ⪯𝑠 𝑞, 𝑠 ∈ S}
where ⌈𝑥⌉𝑝 lifts each sort symbol 𝑠 ∈ 𝑥 to some suitably bounded nonterminal. This approach
(a) e�⇒ ⟨e2 * e3⟩ ⇒ ⟨⟨e1 + e2⟩ * e3⟩
(b) e�⇒ ⟨e2 * e3⟩ ⇒ ⟨⟨ let p� = e� in e0⟩ * e3⟩
(c) e�⇒ ⟨e2 * e3⟩ ⇒ ⟨e2 * ⟨ let p� = e� in e0⟩⟩

properly rules out unwanted derivations on
the left like (a) (for witnessing + ⋗ *) and
(b) (in ⋗ *), since the left argument e2 of
* cannot produce the + - and let -forms

of weaker precedence levels 1 and 0. However, H1 is overly conservative: it also rules out ac-
ceptable derivations like (c) (* ⋖ let). Ultimately the purpose of precedence annotations is
to resolve choices between different possible reduction orders: given a reduced child, which of
the operators on either side of it should be reduced next as part of its parent? Derivations (a) and
(b) represent disfavored choices of reducing the left parent (+ and in) before the right (*)
over the reduced children e2 and e0, respectively. On the other hand, (c) has no viable alterna-
tive reduction order, since let cannot parent a child to its left. In such cases, the precedence
annotations need not be consulted.

To account properly for these left- and right-sided concerns, our elaborated grammar H fea-
tures nonterminals 𝜎 = 𝑝

𝑠
𝑞 with separate precedence bounds 𝑝 and 𝑞 on either side. Uniquely

to this work, we interpret these bounds in a bidirectional fashion: either 𝑝 and 𝑞 are bounds im-
posed by the surrounding derivation tree producing 𝜎 , limiting the terms 𝜎 produces; or they are
bound-requirements synthesized from the term that reduces to 𝜎 . Our definition of elaboration
in Fig. 5.15 is organized accordingly. A production rule 𝜎 ⇒ 𝜒 is introduced either by tighten-
ing the bounds on 𝜎 (Produce-Tighten) or by subsuming the corresponding reduction 𝜎 ⇐ 𝜒

(Produce-Subsume), as illustrated for HHZ in Fig. 5.12.

66

𝜒 ∼ 𝑥 CFG symbol 𝜒 is consistent
with PBG symbol 𝑥

𝑡 ∼ 𝑡 𝑝
𝑠
𝑞 ∼ 𝑠

𝜎 ⇒ 𝜒 Nonterminal 𝜎 produces symbols 𝜒

Produce-Subsume
𝜎 ⇐ 𝜒

𝜎 ⇒ 𝜒

Produce-Tighten

𝑝 ≼𝑠 𝑚 𝑛 ≽𝑠 𝑞
𝑝
𝑠
𝑞 ⇒ 𝑚

𝑠
𝑛

𝜎 ⇐ 𝜒 Symbol sequence 𝜒 reduces to nonterminal 𝜎

PElab-Operand (𝑘 ≥ 0)
[𝑥𝑖]0≤𝑖≤𝑘 ∈ JG(𝑠,◻)K [𝜒𝑖 ∼ 𝑥𝑖]0≤𝑖≤𝑘

𝑥0 ≠ 𝑠 ≠ 𝑥𝑘
⊺
𝑠
⊺⇐ [𝜒𝑖]0≤𝑖≤𝑘

PElab-Infix (𝑘 ≥ 0)
[𝑥𝑖]0≤𝑖≤𝑘 ∈ JG(𝑠,𝑚)K [𝜒𝑖 ∼ 𝑥𝑖]0≤𝑖≤𝑘

𝜒0 = 𝑝
𝑠
𝑛𝐿 𝑛𝑅𝑠

𝑞 = 𝜒𝑘
𝑛𝐿 ≻𝑠 𝑚 ≺𝑠 𝑛𝑅

min(𝑝,𝑚)
𝑠
min(𝑚,𝑞)⇐ [𝜒𝑖]0≤𝑖≤𝑘

PElab-Prefix (𝑘 ≥ 1)
[𝑥𝑖]0≤𝑖≤𝑘 ∈ JG(𝑠,𝑚)K [𝜒𝑖 ∼ 𝑥𝑖]0≤𝑖≤𝑘

𝑥0 ≠ 𝑠 𝑛𝑅𝑠
𝑞 = 𝜒𝑘

𝑚 ≺𝑠 𝑛𝑅
⊺
𝑠
min(𝑚,𝑞)⇐ [𝜒𝑖]0≤𝑖≤𝑘

PElab-Postfix (𝑘 ≥ 1)
[𝑥𝑖]0≤𝑖≤𝑘 ∈ JG(𝑠,𝑚)K [𝜒𝑖 ∼ 𝑥𝑖]0≤𝑖≤𝑘

𝜒0 = 𝑝
𝑠
𝑛𝐿 𝑠 ≠ 𝑥𝑘
𝑛𝐿 ≻𝑠 𝑚

min(𝑝,𝑚)
𝑠
⊺⇐ [𝜒𝑖]0≤𝑖≤𝑘

Figure 5.15: Bidirectional elaboration of production 𝜎 ⇒ 𝜒 and reduction 𝜎 ⇐ 𝜒 rules for CFGH from PBG G

67

node X ∶∶= 𝜏 ∣ S
term R,S ∶∶= {X}

Figure 5.16: Syntax of terms

leq t ∶∶= ⋖ ∣ ≐ <∶ ⊙
stack K ∶∶= * ∣ K tS? 𝜏

hd(*) = *
hd(K tS? 𝜏) = 𝜏

Figure 5.17: Syntax of stacks

𝜒 ⇚ X Node X reduces
to symbol 𝜒

Reduce-Token
𝜏 ⇚ 𝜏

Reduce-Term (𝑘 ≥ 0)
𝜎 ⇐ [𝜒𝑖]0≤𝑖≤𝑘
[𝜒𝑖 ⇚ X𝑖]0≤𝑖≤𝑘
𝜎 ⇚ {[X𝑖]0≤𝑖≤𝑘}

𝜒 ⇛ X Symbol 𝜒 produces
node X

Produce-Token
𝜏 ⇛ 𝜏

Produce-Term (𝑘 ≥ 0)
𝜎 ⇒ [𝜒𝑖]0≤𝑖≤𝑘
[𝜒𝑖 ⇛ X𝑖]0≤𝑖≤𝑘
𝜎 ⇛ {[X𝑖]0≤𝑖≤𝑘}

Figure 5.18: A node is well-formed if it reduces to or is produced by a symbol.

K wf Stack K is
well-formed

WFStack-Nil
* wf

WFStack-Cons
K wf 𝜎?⇛ S?

hd(K) t𝜎? 𝜏
K tS? 𝜏 wf

Figure 5.19: Well-formed stacks

let p = e in e ∈ JG(e, 0)K
let ≠ e 0 ≺e 1 1e� ∼ e

⊺emin(0,�)⇐ let
�p� = �e� in 1e�

Meanwhile, a reduction rule 𝜎 ⇐ 𝜒 synthesizes the
tightest possible bounds on 𝜎 that can accommodate 𝜒 .
These correspond to Aasa’s notion of precedence weights
[3] that aggregate the precedence levels of operators ex-

posed along the left and right spines of a syntax tree. Whether an operator contributes its anno-
tated precedence level to its left and right weights depends on its shape—either operand, prefix,
postfix, or infix. For example, in the derivation on the left using rule PElab-Prefix forHHZ, the
prefix-shaped let -form synthesizes left weight ⊺ and right weight min(0,�), where the latter
folds in the annotated level 0 into the subweight � (underlined to distinguish it from other �
values in the derivation) already computed for the rightmost child 1e�. Our bidirectional presen-
tation reorganizes and generalizes Aasa’s to multi-sorted grammars of arbitrary mixfix forms,
which we discuss further in §2.2.2.

5.3.2 OP Parsing Errors

In this section, we review Floyd’s original method for operator-precedence (OP) parsing [29]. To
motivate our error-handling generalization in §5.3.3, we consider in particular the different ways
an OP parser can fail.

Parsing is the task of organizing token sequences into grammatically well-formed terms.
Fig. 5.16 gives the syntax of terms: a term S = {X} demarcates a sequence X of child nodes, each
either a token 𝜏 or a subterm. We consider S to be well-formed if it is reducible to or producible
from a nonterminal 𝜎 , i.e. 𝜎 ⇚ S or 𝜎 ⇛ S as defined in Fig. 5.18.

OP parsing is a simple form of shift-reduce parsing: input tokens are ingested one at a time,

68

left-to-right, and kept organized in a maximally reduced stack K whose contents form prefixes
of terms under construction. Fig. 5.17 gives the syntax of OP parsing stacks: a stack K is either
empty, the start delimiter * affixed at its base; or it is nonempty K tS? 𝜏 , linking a token 𝜏 to
the rest of the stack K with two pieces of information: a comparison operator t recording how
the head of K precedence-relates to 𝜏 , and an optional term S? recording what was first reduced
between them. A stack K is considered well-formed, as specified in Fig. 5.19, when each of its
links 𝜏𝐿 tS? 𝜏𝑅 reflects a valid precedence relation 𝜏𝐿 t𝜎? 𝜏𝑅 such that 𝜎? ⇛ S?. For brevity, we
will call optional nonterminals slots and optional terms cells.

The height of a stack is the number of ⋖-operators it contains. We can decompose any stack
of height ℎ into a sequence of ℎ height-1 stacks, each of the form 𝜏 ⋖S?0 𝜏0[≐S?𝑖 𝜏𝑖]0<𝑖≤𝑘 (𝑘 ≥ 0)
We may interpret each such stack as a term under construction ⋖S?0 𝜏0[≐S?𝑖 𝜏𝑖]0<𝑖≤𝑘
delimited on its left by 𝜏 , which is either the start of input * or the head of the preceding stack
in the decomposition.

Fig.5.20 shows Floyd’s original algorithm, presented here as a push operationK←Ð
R?

𝜏 = K′ that
pushes the next input token 𝜏 onto stack K over the current reduction-in-progress R? to yield
a new stack K′. Fig. 5.21 and Fig. 5.22 illustrate concrete OP parsing traces for HHZ using the
precedence table in Fig. 5.14—each colored box applies one of the rules in Fig. 5.20, enumerating
within it the satisfied premises, and sends the push-inputs above it to the output stack below
it. Every push begins by consulting how the stack head hd(K) precedence-compares with the
pushed token 𝜏 to decide whether to Shift or Reduce. If hd(K) t 𝜏 , then the parser shifts 𝜏 onto K
and “finalizes” the reduction R? between them. Else, if hd(K) ⋗ 𝜏 , and K has height ℎ ≥ 1, then
the parser has identified its next handle (i.e. reduction target) of the form

hd(K) ⋖R?0 𝜏0[≐R?𝑖 𝜏𝑖]0<𝑖≤𝑘 ⋗R?𝑘+1 𝜏

where hd(K) and 𝜏 delimit the handle {R?0[𝜏𝑖R?𝑖+1]0≤𝑖≤𝑘} to be reduced and propagated up the
stack.

Let us consider the ways this algorithm can fail.

Stuck. Like with most (non-error-handling) methods, a typical OP parser will easily get stuck.
This occurs when the stack head and pushed token share no precedence relation, like 2 and
let in Fig. 5.21.

Invalid Reduction. OP parsing is unsound, meaning it can produce grammatically invalid
reductions. Recall from §5.3.1.3 that each precedence comparison 𝜏𝐿 ⊙𝜌? 𝜏𝑅 means there ex-
ists a derivable string of the form ... 𝜏𝐿𝜌?𝜏𝑅 Floyd’s original definition of precedence

69

K←ÐÐ
R?

𝜏 = K′ Pushing token 𝜏 onto stack K over reduction R?
returns stack K′

OP-Shift
hd(K) t 𝜏

K←ÐÐ
R?

𝜏 = K tR? 𝜏

OP-Reduce (𝑘 ≥ 0)
𝜏𝑘 ⋗ 𝜏 K0 ←ÐÐÐÐÐÐÐÐÐÐÐÐÐ

{R?0[𝜏𝑖R?𝑖+1]0≤𝑖≤𝑘}
𝜏 = K′

K0 ⋖R?0 𝜏0 [≐R?𝑖 𝜏𝑖]0<𝑖≤𝑘 ←ÐÐÐÐR?𝑘+1
𝜏 = K′

Figure 5.20: OP parsing

Shift

Stuck

* ←Ð○ 2

* ⋖ 2

* ⋖○ 2 ←Ð○ let

2 ? let

Figure 5.21: An OP parsing
trace for HHZ (Fig. 5.14) that
gets stuck trying to compare
neighbors 2 and let

Shift

Reduce

Reduce

Shift

Shift

* ←Ð○ 2

* ⋖ 2

* ⋖○ 2 ←Ð○ *

2 ⋗ *

* ←ÐÐÐ
{ 2 }

*

* ⋖ *

* ⋖
{ 2 }

* ←Ð○ (

* ⋗ (
* ←ÐÐÐÐÐÐ
{{ 2 } * }

(

* ≐ (
* ≐
{{ 2 } * }

(

Figure 5.22: A valid OP
parsing trace for HHZ that
returns the invalid term
{{ 2 } * }

comparisons omits the index 𝜌?. This “nonterminal blindness”
means that an OP parser, given a reduction R? between delimiters
𝜏𝐿 and 𝜏𝑅 , can determine which parent delimiter(s) to reduce next,
but not whether R? is a valid child of the chosen parent. In the
final Reduce step in Fig. 5.22, the parser identifies the handle pat-
tern * ⋖ * ⋗ (and proceeds blindly to reduce {{ 2 } * } without
checking that the initial reduction ○ is a valid right-argument to * .

Invalid Prefix. A core tenet of shift-reduce parsers is the valid
prefix property, whichmaintains that the parse stack forms the prefix
of some grammar-derivable symbol string. This property ensures
that the parser is sound, i.e. every parsed term is well-formed.

Ideally prefix-validity would be implied by stack well-
formedness (Fig. 5.19), but this is not always the case for an
OP parser depending on the grammar. Consider the following small
grammar

t̂ → $ x $ ∣ t
x → { t } ∣ x

which produces strings like t, x, ${t}$, ${$x$}$, etc. Generated from this grammar are the
precedence comparisons * ⋖ $ and $ ≐ $, so Floyd’s parser would happily ingest the tokens
xx$ and organize them into the stack * ⋖○ $ ≐●{x} $ ≐●{x} $, which is well-formed but
prefix-invalid. The issue here is the reuse of $ as both opener and closer in the rule t̂ → x.
Distinguishing between these two uses would require stack-level analyses out of scope of the
local pairwise precedence comparisons.

70

5.3.3 OP Parsing with Error Handling

We now define our error-handling extension of OP parsing that avoids or recovers from the var-
ious failure modes seen in the last section. Some of our changes involve requirements (§5.3.3.1)
and transformations (§5.3.3.2) of the language grammar; others involve generalizing Floyd’s al-
gorithm (§5.3.3.3) to incorporate completion-based repairs and to restore soundness by making
use of our nonterminal-enriched precedence comparisons.

5.3.3.1 Molding Tiles

To secure the valid prefix property, we take the blunt approach of requiring every tile 𝑡 ∈ T to
appear uniquely in the PBG G:

Assumption 2 (Unique Tiles). A tile 𝑡 ∈ T is called unique if (...𝑡 ... ∈ JG(𝑠, 𝑝)K and ...𝑡 ... ∈
JG(𝑟,𝑞)K) imply (𝑠 = 𝑟 and 𝑝 = 𝑞 and 𝑡 appears uniquely in G(𝑠, 𝑝)). All tiles 𝑡 ∈ T are unique.

With Assumption 2, we can guarantee for any height-1 precedence chain of the form 𝜏 ⋖𝜌?0
𝑡0[≐𝜌?𝑖 𝑡𝑖]0<𝑖≤𝑘 that the string [𝜌?𝑖𝑡𝑖]0≤𝑖≤𝑘 forms a prefix of the yield of some nonterminal 𝜎
adjacent to 𝜏 :

Lemma 1 (Valid Prefixes). For all terminals 𝜏 , tiles [𝑡𝑖]0≤𝑖≤𝑘 , and slots [𝜌?𝑖]0≤𝑖≤𝑘+1 (𝑘 ≥ 0) such
that 𝜏 ⋖𝜌?0 𝑡0[≐𝜌?𝑖 𝑡𝑖]0<𝑖≤𝑘 ◽ 𝜌?𝑘+1 there exist nonterminals 𝜎𝜏 , 𝜎 , tiles [𝑡𝑖]𝑘<𝑖≤ℓ , and slots
[𝜌?𝑖]𝑘+1<𝑖≤ℓ+1 (ℓ ≥ 𝑘) such that 𝜏 ◽ 𝜎𝜏 ◃∗ 𝜎 ⇒ 𝜌?0[𝑡𝑖 𝜌?𝑖+1]0≤𝑖≤ℓ .

Assumption 2 would be severely constraining if G were a grammar of purely textual tokens—
for example, we would not be able to reuse parentheses () across different sorts. In this work,
we take G to be a grammar of tiles, which we conceptualized in our Hazel grammar GHZ (Fig. 5.11)
as being textual tokens paired with “molds”, visually distinguished using color and shape. Rather
than requiring that the grammar author manually design and distinguish their terminal symbols,
however, we can generically convert any ordinary textual grammarF into a grammar G of unique
tiles, simply by augmenting each terminal symbol in F with its one-hole context, i.e. its mold. We
continue this discussion in §5.4, where we describe how tylr chooses between multiple possible
molds for a textual token.

5.3.3.2 Injecting Grout

When a shift-reduce parser “goes wrong”, it is because of an unresolved mismatch between the
bottom-up reductions accumulated so far and the remaining top-down expectations of the gram-
mar. Many of these mismatches are inconsistencies of multiplicity: in Fig. 5.22, the reduction
{{ 2 } * } in the last Reduce step is ill-formed because there is no term where one is expected

71

𝜎 ⇐ 𝜒 𝜒 reduces to 𝜎 in grout-injected G grout 𝛾 ∶∶= ∣ ∣ ∣
terminal 𝜏 ∶∶= ... ∣ 𝛾𝑠

...

GInj-Hole

⊺
𝑠
⊺⇐ 𝑠

𝜎 !𝑠 = { ⊺ if 𝜎 /∼ 𝑠
� if 𝜎 ∼ 𝑠 } ⟨𝑝𝑟𝑞⟩𝑚𝑠 =

⎧⎪⎪⎨⎪⎪⎩

max(𝑚,𝑝)
𝑟
max(𝑞,𝑚) if 𝑟 = 𝑠

𝑝
𝑟
𝑞 if 𝑟 ≠ 𝑠

⎫⎪⎪⎬⎪⎪⎭

GInj-Operand (𝑘 ≥ 0)

[�𝑠�⇒∗ ...𝜌𝑖 ...]0≤𝑖≤𝑘
⊺
𝑠
⊺⇐ 𝑠⟨𝜌0⟩0𝑠 [𝑠⟨𝜌𝑖⟩0𝑠]0<𝑖≤𝑘

𝑠

GInj-Infix (𝑘 ≥ 0)
�
𝑠
�⇒∗ 𝜌0 ... [�𝑠�⇒∗ ...𝜌𝑖 ...]0<𝑖<𝑘

�
𝑠
�⇒∗ ...𝜌𝑘

𝜌0 ! 𝑠𝑠
𝜌𝑘 ! 𝑠 ⇐ ⟨𝜌0⟩0𝑠 [𝑠⟨𝜌𝑖⟩0𝑠]0<𝑖≤𝑘

GInj-Prefix (𝑘 ≥ 0)

[�𝑠�⇒∗ ...𝜌𝑖 ...]0≤𝑖<𝑘
�
𝑠
�⇒∗ ...𝜌𝑘

⊺
𝑠
𝜌𝑘 ! 𝑠 ⇐ 𝑠⟨𝜌0⟩0𝑠 [𝑠⟨𝜌𝑖⟩0𝑠]0<𝑖≤𝑘

GInj-Postfix (𝑘 ≥ 0)
�
𝑠
�⇒∗ 𝜌𝑘 ... [�𝑠�⇒∗ ...𝜌𝑖 ...]

𝑘>𝑖≥0
𝜌𝑘 ! 𝑠𝑠

⊺⇐ [⟨𝜌𝑖⟩0𝑠 𝑠]
𝑘≥𝑖>0 ⟨𝜌0⟩

0
𝑠

𝑠

Figure 5.23: Grout injection extending the definition of terminals 𝜏 (Fig. 5.10) and reduction 𝜎 ⇐ 𝜒 (Fig. 5.15)

�e� 0e0 0e0 ∣ 0e0 0e0 0e0 ∣ ...

�e⊺ 0e0 ∣ 0e0 �t� ∣ ...

⊺e� 0e0 ∣ �p� 0e0 ∣ ...

⊺e⊺ ∣ 0e0 ∣ �p� ∣ ...

�p� 0p0 0p0 ∣ 0p0 �t� ∣ ...

�p⊺ 0p0 ∣ 0p0 �t� ∣ ...

⊺p� 0p0 ∣ �t� ∣ ...

⊺p⊺ ∣ 0t0 ∣ ...

�t� 0t0 0t0 ∣ ...

�t⊺ 0t0 ∣ ...

⊺t� 0t0 ∣ ...

⊺t⊺ ∣ ...
Figure 5.24: Excerpt of the grout rules injected (Fig. 5.23) into HHZ (Fig. 5.12). The production rules are arranged
and color-coded by whether they emerge from subsuming reduction or by tightening (Fig. 5.15).

as the right multiplicand; in Fig. 5.21, the parser gets stuck on neighbors 2 and let because it
does not know how to combine these parts of two unrelated terms into one as required. When
multiplicities align, there remains further the possibility of sort inconsistencies, such as the one
in Fig. 5.7 between the let -delimiter expecting a pattern and the -> -term providing a type.

Fig.5.23 shows howwematerialize these inconsistencies as grout forms injected into the elabo-
rated grammar, extending our definition in Fig. 5.15, while Fig. 5.24 shows an excerpt of the grout
forms injected into HHZ. Every sort acquires the form ⊺

𝑠
⊺ ⇒ 𝑠 , injected via rule GInj-Hole,

consisting of a single convex grout terminal 𝑠 that stands in for missing terms of sort 𝑠 .
Grout terminals also come in prefix , postfix , and infix shapes that are used to wrap

sort-inconsistent and extraneous terms, injected via the rules GInj-Operand, GInj-Infix,
GInj-Prefix, and GInj-Postfix. There are four of these rules to enumerate over whether the
left and right ends of the form are bookended with a prefix 𝑠 or postfix 𝑠 grout, respectively. The
left (right) bookend is optional when the exposed nonterminal is a leftmost (rightmost) descen-
dant of the unbounded sort �𝑠�. For example, Fig. 5.24 includes the grout production ⊺p�⇒ �t�

72

because of the p-sorted form �p1 : �t� inHHZ (Fig. 5.12), where �t� is the rightmost descendant.
On the other hand, there is no e-sorted form with �p� as its leftmost or rightmost descendant, so
�p� can only appear in the e-sorted grout forms that buffer it on both sides (e.g. �p�).

Grout terminals behave like associative operators of loosest precedence within each sort,
where their left and right tip decorations follow the pattern of tiles. More precisely, 𝛾𝑠

𝐿
≐ 𝛾𝑠

𝑅

if 𝛾𝐿 is right-concave and 𝛾𝑅 is left-concave, and 𝛾𝑠 ⋖ 𝑡 for any tile 𝑡 of sort 𝑠 if 𝛾 is right-concave.
The nonterminal descendants 𝜌𝑖 are precedence-bounded in their injected forms ⟨𝜌𝑖⟩0𝑠 , depend-
ing on their sort, to prevent conflicting precedence comparisons between grout terminals of the
same sort.

5.3.3.3 Parsing withmeldr

Fig. 5.27 gives the rules for parsing withmeldr, whose notable features we will illustrate through
several examples.

Fig. 5.28 illustrates howmeldr directly generalizes the standard non-error-handling algorithm
(Fig. 5.20). The main difference is the new fill operation, defined in Fig. 5.25, invoked in Fig. 5.28
as ⋅ Ä ○slot = ○cell in Reduce and { x }Ä�p1 = { x } in Shift. Filling is responsible for assigning
accumulated reductions to grammatically appropriate slots, now exposed as operator indices in
the precedence comparisons. In Reduce, nothing ⋅ is assigned to the unfillable slot ○slot; in Shift,
the reduction { x } is assigned to the fillable slot ●�p1. In these cases, the input reduction is
returned as is because it is consistent with its assigned slot. In other cases, fillingmay additionally
repair the given reduction with additional grout to bridge any multiplicity or sort inconsistencies.
Fig. 5.29 shows how pushing : against the stack * ⋖○ let leads to the slot ●�p1 getting filled
instead with convex grout { p}.

Fig. 5.30 shows howmeldr generalizes the single-step precedence comparisons of the original
algorithm to multi-step precedence walks. Where the original method would get stuck trying to
push Num or (against the stack * ⋖○ let because let is precedence-comparable with either,
meldr can proceed because it finds extended walks like let ⋖○ p ⋖○ Num and let ≐�p�
= ≐�e� in ⋗1e� (. In both of these cases, the fill operation has multiple ways of assigning

the initial reduction { x } to the traversed slots, as determined by the rule Fill-Partition.
Whichever walk is chosen and however its slots are filled (§5.4.1), the intermediate terminals and
filled slots traversed between the comparands form the completionmeldr uses to repair the input.

A subtle but consequential difference between meldr and OP parsing lies in our definition
of Reduce: meldr does not require that the comparison walk conclude with the pushed terminal
𝜏—any concluding terminal (notated ◻) is sufficient. This relaxation allows meldr to fall back
to Reduce when the stack head and pushed terminal are not monotonically precedence-walkable,

73

RÄ 𝜎? = S? Filling slots 𝜎? with reductions R
returns cells S?

Fill-None

⋅ Ä ○ = ○

Fill-Default
𝜎 ∼ 𝑠

⋅ Ä ●𝜎 = ●{ 𝑠}

Fill-Operand (𝑘 ≥ 0)
{ 𝑠 R0 [𝑠 R𝑖]0<𝑖≤𝑘 𝑠}
´¹¹¸¹¹¶

𝜎 ⇛ S
[R𝑖]0≤𝑖≤𝑘 Ä ●𝜎 = ●S

Fill-Infix (𝑘 ≥ 0)
{R0 [𝑠 R𝑖]0<𝑖≤𝑘}
´¹¹¹¸¹¹¹¶

𝜎 ⇛ S
[R𝑖]0≤𝑖≤𝑘 Ä ●𝜎 = ●S

Fill-Prefix (𝑘 ≥ 0)
{ 𝑠 R0 [𝑠 R𝑖]0<𝑖≤𝑘}
´¹¹¹¸¹¹¹¶

𝜎 ⇛ S
[R𝑖]0≤𝑖≤𝑘 Ä ●𝜎 = ●S

Fill-Postfix (𝑘 ≥ 0)
{[R𝑖

𝑠]0≤𝑖<𝑘 R𝑘
𝑠}

´¹¹¸¹¹¶
𝜎 ⇛ S

[R𝑖]0≤𝑖≤𝑘 Ä ●𝜎 = ●S

Fill-Partition (1 ≤ 𝑗 ≤ 𝑘)
R = [R𝑖]1≤𝑖≤𝑘 [R𝑖 Ä 𝜎?𝑖 = S?𝑖]1≤𝑖≤𝑘

RÄ [𝜎?𝑖]1≤𝑖≤𝑘 = [S?𝑖]1≤𝑖≤𝑘

Figure 5.25: Filling slots

parse (K, ⋅) = K

parse (K, 𝜏 𝜏) = parse (K←Ð⋅ 𝜏, 𝜏)

Figure 5.26: Parsing with meldr

K←Ð
R

𝜏 = K′ Pushing token 𝜏
onto stack K

over reductions R
returns stack K′

Shift (𝑘 ≥ 0)

hd(K)[t𝜌?𝑖 𝜏𝑖]0≤𝑖≤𝑘 = 𝜏

RÄ [𝜌?𝑖]0≤𝑖≤𝑘 = [S?𝑖]0≤𝑖≤𝑘

K←Ð
R

𝜏 = K[tS?𝑖 𝜏𝑖]0≤𝑖≤𝑘

Reduce (0 ≤ 𝑘 ≤ ℓ)

𝑡𝑘[≐𝜌?𝑖 𝑡𝑖]𝑘≤𝑖≤ℓ ⋗𝜌?ℓ+1 ◻
RÄ [𝜌?𝑖]𝑘<𝑖≤ℓ+1 = [R?𝑖]𝑘<𝑖≤ℓ+1
K0 ←ÐÐÐÐÐÐÐÐÐÐÐÐÐ
{R?0[𝑡𝑖 R?𝑖+1]0≤𝑖≤ℓ}

𝜏 = K

K0 ⋖R?0 𝑡0 [≐R?𝑖 𝑡𝑖]0≤𝑖≤𝑘 ←ÐR
𝜏 = K

Degrout (𝑘 ≥ 0)
K0 ←ÐÐÐÐÐÐÐÐ
[R?𝑖]0≤𝑖≤𝑘 R

𝜏 = K

K0 ⋖R?0 𝛾
𝑠
0 [≐R?𝑖 𝛾

𝑠
𝑖]0<𝑖≤𝑘 ←ÐR

𝜏 = K

Figure 5.27: Pushing with meldr

Reduce

Shift

* ⋖○ let ⋖○ x ←Ð○ :

x ⋗ :

* ⋖○ let ←ÐÐÐ
{ x }

:

let ⋖ :

* ⋖○ let ⋖{ x } :

Reduce

Shift

* ⋖○ let ⋖○ x ←Ð⋅ :

x ⋗○slot :

⋅ Ä ○slot = ○cell
* ⋖○ let ←ÐÐÐÐÐÐ

{○ x ○cell}
:

let ⋖�p1
:

{ x }Ä�p1 = {○ x ○cell}
* ⋖○ let ⋖{○ x ○cell}

:

Figure 5.28: Corresponding traces of OP parsing (left) and meldr (right) on the
same inputs to highlight their differences

Shift

* ⋖○ let ←Ð⋅ :

let ⋖�p1
:

⋅Ä�p1 = { p}
* ⋖○ let ⋖{ p} :

Figure 5.29: meldr filling slot
�p1 with grout form { p

}

74

completing and reducing the head stack level and deferring the comparison to something further
up the stack. An example of this is shown in the first Reduce step in Fig.5.31b that handles pushing
let against the stack * ⋖○ 2 . As shown in the example and in our metatheory, this recursive
deferral is guaranteed to conclude eventually with the base rule Shift, thanks to the various
grout forms that can accommodate both the accumulated reduction and the pushed terminal.
This fallback to completion and reduction is a sort of opposite of “panic mode”, which is forced
instead to drop parts of the stack without the multiplicity-handling guarantees of grout.

5.3.3.4 Sound and Total

Shift

* ⋖○ let ←Ð⋅ Num

let ⋖○ p ⋖○ Num

⋅ Ä ○○ = ○ ○
* ⋖○ let ⋖○ p ⋖○ Num

(a)

Reduce

Shift

* ⋖○ let ←Ð⋅ (

let ≐�p� = ≐�e� in ⋗1e� (

⋅ Ä �p� �e� 1e� = { p} { e} { e}
* ←ÐÐÐ

Slet
(

* ≐�e� (

SletÄ�e� = Slet
* ≐Slet (

(b) Slet = { let { p
} = { e

} in { e
}}

Figure 5.30: meldr traces with multi-step prece-
dence walks

Altogether, molded tiles, injected grout, and our fill-
ing and walking extensions of OP parsing guarantee
thatmeldr can complete and reduce any sequence of
input tiles into a well-formed term.

Lemma 2 (Pushing is Sound and Total). For all well-
formed stacksKwf and tiles 𝑡 , there exists well-formed
stack K′ wf such that K←Ð⋅ 𝑡 = K′.

Theorem 2 (Parsing is Sound and Total). For all
well-formed stacks K wf and tile sequences 𝑡 , there
exists well-formed stack * ≐S (wf such that
parse (K, 𝑡 () = * ≐S (.

The traces in Fig. 5.31 illustrate this guarantee for
the failed examples in Fig. 5.21 and Fig. 5.22.

5.4 Frommeldr to tall tylr

meldr formalizes a nondeterministic parser of tile sequences, possibly completing themwith some
choice of grout and additional tiles, and we showed that the resulting term is grammatical and
guaranteed to exist. To turn this into a deterministic parser of textual input, we must answer
the following questions. (A) How does the parser “mold” raw text into the tiles to be parsed, in
particular when numerous grammatically unique tiles share a common textual form? (B) How
does the parser rank and choose among different possible completions?

Moreover,meldr assumes a batch processing context, where the entire input is parsed left-to-
right from scratch. Further questions arise when incorporating meldr into an interactive editor

75

Shift

Reduce

Reduce

Shift

Shift

* ←Ð⋅ 2

* ⋖○ 2 ⋅ Ä ○ = ○
* ⋖○ 2 ←Ð⋅ *

2 ⋗○ * ⋅ Ä ○ = ○
* ←ÐÐÐ

{ 2 }
*

* ⋖�e3 *

{ 2 } Ä �e3 = { 2 }
* ⋖
{ 2 }

* ←Ð⋅ (

* ⋗3e� (

⋅ Ä 3e� = { e}
* ←Ð

S∗
(

* ≐�e� (

S∗ Ä �e� = S∗
* ≐S∗ (

(a) S∗ = {{ 2 } * { e
}}

Reduce

Shift

Reduce

Degrout

Shift

* ⋖○ 2 ←Ð⋅ let

2 ⋗○ ◻ ⋅ Ä ○ = ○
* ←ÐÐÐ

{ 2 }
let

* ⋖0e0
e ⋖○ let

{ 2 } Ä 0e0 ○ = { 2 } ○
* ⋖
{ 2 }

e ⋖○ let ←Ð⋅ (

let ≐�p� = ≐�e� in ⋗1e� (

{ p} Ä �p� �e� 1e� = { p} { e} { e}
* ⋖
{ 2 }

e ←ÐÐÐ
Slet

(

* ←ÐÐÐÐÐÐ
{ 2 } Slet

(

* ≐�e� (

{ 2 } Slet Ä �e� = Ŝ
* ≐Ŝ (

(b) Slet = { let { p
} = { e

} in { e
}}, Ŝ = {{ 2 } eSlet}

Figure 5.31: Complete parsing traces using the rules in Fig. 5.27 to illustrate how meldr (a) avoids producing ill-
formed terms like in Fig. 5.22 and (b) avoids getting stuck like in Fig. 5.21

76

like tall tylr. (C) How might existing structures and completions guide or constrain subse-
quent molding and completion choices? (D) How does the user interact with the system-chosen
completions, in particular when it differs from their intent?

This section describes howwe addressed these questions in our implementation of tall tylr.
Subsequently, §5.5 presents the user study we conducted to evaluate these decisions.

5.4.1 Minimizing Obligations

Guiding tall tylr’s various decisions is a simple principle: minimize obligations. Obligations
serve not only to scaffold and complete partial structures, but also as a useful metric for resolving
ambiguities. Because meldr is total, we may adopt the simple strategy of trying every choice at
each juncture—setting aside efficiency concerns for the moment—and taking the one that inserts
the fewest (and removes the most) obligations.

Each type of obligation is weighted differently. Recall from §5.2 that the various forms of
obligations can be viewed as indicators of multiplicity and sort inconsistencies between the top-
down expectations of the grammar and the bottom-up reductions of the input:

• Operand grout indicate there is no term where one is expected (0 = ● < 1).
• Ghosts indicate there is a partial term where one is expected (0 < ● < 1).
• Prefix and postfix grout indicate there is a term as expected (● = 1), but of the wrong sort.
• Infix grout indicate there are multiple terms where one is expected (1 < ●).

The obligations are listed above in order of increasing weight class. Given two sets of changes in
obligations, we compare them lexicographically from highest to lowest weight class. The prin-
ciple underlying this ordering is context preservation: lower-weighted obligations like operand
grout and ghosts are introduced to complete a form independent of its context, whereas higher-
weighted obligations like pre-, post-, and infix grout appear when the current context cannot
accommodate a form and must change.

* ⋖○ let ←Ð○ (= * ⋖○ let ≐
{

p
}

= ⋖○ (

* ⋖○ let ←Ð○ (= * ⋖○ let ⋖○ (

* ⋖○ let ←Ð○ (= * ⋖○ let ⋖○ p ⋖○ (

Molding Tiles When a token is inserted,
tall tylr looks up which tiles in the gram-
mar share the same textual form (typically
only a few) and considers the consequences
of parsing each one. For example, when edit-
ing Hazel (Fig. 5.11), suppose the token (is inserted against the stack * ⋖○ let . There are three
distinct tileswith the same textual label, each of a different sort. Pushing each tile against the stack
leads to the following minimal outcomes, where ghosts are indicated with a white background:

77

The first option introduces an operand hole and a ghost, while the third introduces a prefix grout.
The clear winner is the second option, an opening parenthesis of pattern sort, which introduces
no new obligations.

Choosing Completions The parsing rules allow for arbitrary walks through the precedence
relation graph, with each step from the head of the stack inserting one or more new obligations.
For example, the following are all valid precedence walks when applying the Shift rule to derive
* ⋖○ (←Ð○ , :

(𝐴) (≐
{

e
}

, (𝐷) (⋖○ (≐
{

e
}

,

(𝐵) (≐
{

e
}

, ≐
{

e
}

, (𝐸) (⋖○ let ≐
{

p
}

= ⋖○ (≐
{

e
}

,

(𝐶) (≐
{

e
}

, ≐
{

e
}

, ≐
{

e
}

, (𝐹) (⋖○ e ⋖○ (≐
{

e
}

,

tall tylr limits the walks considered to those of shortest length found via breadth-first search,
ruling out options like (B) and (C). tall tylr also filters out walks with strictly ⋖-intermediate
tile levels, such as let ≐

{
p
}

= in (E), preferring instead to abstract such possibilities with
grout like in (F). The remaining walks are subsequently sorted by height and length to break ties
in obligation deltas when filling in any accumulated terms.

5.4.2 Maintaining Obligations

Total error-correcting parsing lends itself to a continuously structured editing experience. In-
deed, our obligation design is inspired directly by numerous structure editor designs [46, 47]. In
this setting, questions arise as to how to maintain and remove existing obligations to produce a
smooth editing experience, and how to insert new obligations around existing structures.

The main concern regards inserting, maintining, and removing ghosts, as the minimal requi-
site grout needed to complete an edit state is fully determined if all requisite tiles are in place.
Ghost maintenance concerns roughly divide into three areas. The first concerns inserting ghost
replacements after deleting requisite tiles—in this case, to maximize continuity, tall tylr re-
places deleted requisite tiles with ghosts in the same position. The second concerns inserting
fresh ghosts around existing structures on insertion. As mentioned in §5.2, tall tylr uses a sim-
ple policy of inserting any pending ghosts at the first newline following the insertion—all other
positioning concerns are deferred to obligation minimization and completion choices.

The third area concerns removing existing ghosts when they are no longer needed. tall

tylr models its edit state as a pair of prefix and suffix stacks, where the suffix is reparsed after
each change. There are two cases to consider. The first is when a ghost in the suffix becomes

78

redundant—for example, when inserting) between the stacks

* ⋖○ (⋖○ 2 ∣ + ⋗
{ 3 }

) ⋗○ (

When a ghost is encountered in the suffix, tall tylr pushes it onto the prefix stack as if it were
a solid tile and removes it if it cannot find an ≐-match. The second case is when a ghost in the
prefix becomes redundant—for example, when inserting in between the stacks

* ⋖○ let ≐
{

p
}

= ≐
{

e
}

in ⋖○ 4 ∣ (

When tall tylr pushes in onto the prefix and encounters the ghost in , tall tylr tries
removing it and commits to the removal if the pushed in finds an ≐-match. Our current design
is limited in that it provides no way to removing ghosts directly, instead requiring the user to
insert a solid tile replacement elsewhere, the consequences of which we discuss in more detail in
§5.5.

5.4.3 Performance

The focus of this paper is on the conceptual, theoretical, and interaction design of tall tylr.
We did little to optimize its performance beyond what was needed for responsiveness on rela-
tively small programs (less than 100 lines) and make no strong claims, though we report basic
performance numbers in the supplemental appendix for the sake of completeness (Appendix B).
There are high-level reasons to believe that this approach would scale performantly. Standard
OP parsing scales linearly with the input and moreover enjoys the property of local parsability
which greatly simplifies incrementalization and parallelization [7, 8]. Meanwhile, prior work on
enumerating local repairs [16, 25] suggests this can be done efficiently. We leave detailed opti-
mizations along these lines to future work.

5.5 User Study

Prior work on error-handling parsing does not explicitly consider user interfaces for represent-
ing and interacting with parse errors. In tall tylr, we explore a novel UI that materializes
obligation-based repairs as inline completions. This requires making choices about where to in-
sert obligations in situations underdetermined in our formal model. Providing a good user experi-
ence thus requires choosing heuristics which adequately anticipate user intent across real-world
coding tasks, as well as providing affordances to correct obligation placement in cases where
these heuristics fail.

79

We took a maximally structured approach, inserting or removing obligations on every code
edit so that the edit state remains structured at all times. While this strategy is desirable in that it
allows the possibility of continuous language server feedback, it is relatively aggressive, raising
questions about the impact of frequent insertion and removal of elements within the text flow.

We considered the following questions:
Q1 Do users generally find tall tylr usable and useful across a range of naturalistic code in-

sertion and modification tasks?
Q2 Duringwhich kinds of editing operations do users find specific tall tylrmechanisms useful,

confusing, or cumbersome?

5.5.1 Study Design

We ran a remote user study, recording participants’ screens as they performed nine code tran-
scription and modification tasks. Each sixty minute session began with a series of pre-recorded
videos outlining the motivation for tall tylr and its essential editor mechanisms. To reduce
jargon, we referred to syntactic obligations as ‘placeholders’ in the study materials.

After the introduction, users performed a practice task to familiarize themselves with the
study setup. For each task, they were asked to read and internalize their goal, ask any clarifying
questions, and then proceed, pausing after each task to relay any reflections, possibly replaying
their actions. At the end of the study, participants were sent a link to an exit survey.

We piloted a shorter version of this study with an earlier prototype; we have included quotes
from one previous participant (labeled P0) in §5.5.2.

5.5.1.1 Participants

We recruited participants with self-reported experience in expression-based languages by post-
ing on Bluesky, Mastodon, and X offering compensation of $25 USD for a 1-hour session. Our
study had 9 participants (8 male, 1 non-binary); ages 19-38 (𝜇 = 28); 5-25 years of programming
experience (𝜇 = 13), and 1-15 years of functional programming experience (𝜇 = 6).

5.5.1.2 Tasks

We chose nine code editing tasks (Table 5.1) intended to reflect real-world use patterns, six of
which are adapted from a previous study [47]. As well as simple entry and spot-editing tasks,
we included more complex goals most economically accomplished by multiple edits which tem-
porarily break term structure; an example is shown in Fig. 5.32. Since the language syntax is new
to study participants, we asked them to carefully read the desired end state, and to ask the study
administrator any questions about the semantics of the requested transformation.

80

Table 5.1: Study tasks including line count change between initial and target states

Task Type Description Lines
1 Transcription Linear entry of data pipeline +5
2 Modification Rearrange the elements of a data pipeline +2 -2
3 Transcription Linear entry of geometry processing function +5
4 Modification Extract helper function +6 -3
5 Transcription Linear entry of graphics function definition +7
6 Modification Refactor a function to remove redundancy +7 -7
7 Modification Add a sum type and add branching to linear code +9 -3
8 Modification Uncurry function definition and type annotation +2 -2
9 Modification Fuse a series of transformations +4 -4

Figure 5.32: Task 6 asked participants to refactor a function from the start state on the left to the target state on
the right. Highlighting is added here for readability and was not present in the study.

81

After each task, participants were asked to reflect on any unexpected or interesting behav-
iors they encountered. Since we knew participants would approach tasks via different editing
strategies, for some tasks we provided a follow-up reflection slide illustrating a specific edit and
ensuing placeholder insertion in order to more directly solicit opinions on particular heuristics.

5.5.2 Results

Figure 5.33: Participant opinions on tall tylr’s general usability (left) and reactions to placeholders (right)

Participant assessments of overall usability are summarized in Fig. 5.33 , with eight of nine
participants at least somewhat agreeing that tall tylr was easy to use. However four partici-
pants found the editor at least somewhat mentally demanding, with two experiencing stress or
annoyance. This may have been impacted by bugs in the prototype. Promisingly, six participants
reported desire to frequently use an editor supporting placeholder completions.

Of those who found tall tylr easy to use, P8 said “the typing experience felt premium,
bespoke, closer to video game than text editor”. With respect to obligations, P0 remarked “I
don’t think I expect an editor to exactly pinpoint what fix I need to make. How would it know
what I intended? But I like that this allows me to instantly see what it is that you’re assuming I
meant.”

Seven participants at least somewhat agreed obligations helped while writing code. Partici-
pants found placeholders particularly helpful during left-to-right entry, with P8 saying “I always
would like placeholder completions until I have a complete expression!”. Some attributed this to
lowered mental load - P0 liked that they could “turn my brain off a bit while typing them out”.
P2 appreciated that they “just have to remember how to write the first token in a term” due to
ghost insertion.

However, five participants felt obligations at least somewhat got in the way while modifying
code, and half of participants found placeholders at least somewhat visually distracting and hard
to understand. P9 said that “When I’ve created an invalid state [during refactoring], the place-
holders often didn’t feel helpful”. P7 agreed, saying “it seemed to just break and also just jumble
up the screen which is when I probably would’ve preferred a normal editor with red text”.

We identified a number of specific scenarioswhere placeholders proved problematic. Three are

82

included below, and others (along with more participant reactions) are located in the appendix.

Failed attempts to bust ghosts directly. Although our intended workflow to address ghosts
in unwanted positions is for the user to insert the delimiter where they wanted, leaving tall

tylr to clean up the misplaced ghost, many participants found themselves wanting to interact
with ghosts more directly. At least five participants attempted to directly delete ghosts in one
or more tasks, despite a caution against this in the introductory video. P4 felt “the placeholder
completions felt like they were there to help the computer, not me”, saying that “where I was
unable to delete the ghosts and grout, it took a while to figure out how to get rid of them.” This
was particularly felt when the obligations were inserted in the middle of a complex edit, with
P5 saying “the editor sometimes added a lot of holes while I was in the middle of editing an
expression, which I instinctively tried to delete.” This issue was exacerbated by a bug in the
tall tylr prototype that sometimes prevented ghost cleanup in the presence of nested ghost
delimiters.

Figure 5.34: During Task 8, participants must modify type anno-
tation (A) to uncurried form. If this is approached in a left-to-right
fashion, the user will insert a comma (creating an operand obli-
gation), delete the parenthesis (leaving a ghost), and delete the
type arrow (creating a infix obligation) as shown in (B). If the ghost
parenthesis did not retain its location, the grout could be combined
and cleaned up. This cleanup only occurs when the user re-inserts
the closing parenthesis (C).

Ghosts are sometimes too tied
to the place where they were
deleted. Although participants
generally liked that ghost delimiters
remembered their original positions,
this did lead to some confusing in-
between (“tween”) states. Fig. 5.34
shows a scenario encountered by
three participants during Task 8.
Here users found the tween state
distracting, sometimes attempting unsuccessfully to delete the obligations directly, although all
eventually moved on to complete the task successfully.

Uncertainty around triggering token remolding. In tall tylr users must press space after
entering a leading delimiter like let before the associated grout and trailing delimiter ghosts are
inserted. This special treatment of space is primarily to permit entry of tokens beginning with
let, and secondarily to mitigate jarring changes by limiting them to occur only when certain
’action keys’ are pressed. In our study this behavior was unproblematic when writing code,
but for editing it caused issues, particularly during typo correction. For example, during Task 1
participantP3mistyped an operator requiring space and continued on to the end of the line. They
later went back to correct it, but since there was already a space afterwards, they didn’t bother

83

to press space after the correction, resulting in remaining infix obligation and the operator left
unmolded. Similar issues confusion for at least 3 participants, including P7who noted that "space
has a learning curve".

5.5.3 Threats to Validity

Our participants are few and drawn from social media networks already self-selected for affinity
towards novel programming tools and concepts.

Our study is a synthetic representation of real coding tasks in the sense that participants’
attention is artificially divided. Where programmers might otherwise be focused on writing, they
now must go back and forth between the slides and the editor. This might make tall tylr look
both worse and better, in that participants cannot devote their full attention to editor mechanics,
but also may avoid being distracted by confusing obligations during awkward tween states.

For the purpose of reducing jargon, we referred to syntactic obligations as ‘placeholders’ in
the study materials, a choice which may have backfired as some participants seemed to expect
that these placeholders should be less insistent and easier to dismiss.

There are also a number of factors which complicate clearly ascribing participant difficulties
to tall tylr mechanics, including: (1) unfamiliar syntax leading to task confusion and higher
rates of typos; (2) bugs in the editor interfering with participants’ accurately internalizing editor
mechanics; (3) learning curve and difficulty internalizing novel concepts within 60 minutes.

5.6 Conclusion

This chapter presented tall tylr, a tile-based parser and editor generator that handles errors
by completing its input with syntactic obligations. We developed these ideas precisely in our
parsing calculus meldr, which extends OP parsing with error handling and guarantees a well-
formed result on all inputs—along the way, it offers a new unified account of operator precedence.
Key components of meldr’s assured totality include relaxing grammaticality with grout, used to
buffer inconsistencies of multiplicity and sort, and generalizing the single-step comparisons of
OP parsing to multi-step walks that serve as completion-repairs. We proposed the principle of
minimizing obligations that governs how tall tylr discharges the various choices required for
parsing and handling errors. Our user study suggested that syntactic obligations generated this
way have both demand and promise, but more design work is needed to give the programmer
more control over their placement and removal, especially when modifying existing code. Alto-
gether, this work opens up a significant new design space and we look forward to future design
experiments driven by the core ideas introduced in this chapter.

84

CHAPTER 6

Concluding Remarks

This dissertation presented the tylr series of design experiments in increasingly text-like
structure editing. Where prior art has focused on streamlining left-to-right transcription, this
work emphasized the ergonomics of modifying existing code. A key unifying idea across these
designs was the use of obligations to buffer structural inconsistencies and materialize to the pro-
grammer what remains to reach completion.

A persistent design challenge lay in the interaction mechanics for delimiter obligations, which
saw the biggest changes across the tylr series. Our user study of tall tylr and its use of
ghosts suggested some promise but also that further design work remains, both in unifying the
interaction mechanics for different types of obligations and providing the user better ways of
rejecting default completions. If surfacing obligations continues to pose problems, then we may
consider hybrid approaches that continue to use obligations internally if not always externally.

These design experiments converged on a novel method of parsing and error handling. Start-
ing with the perspective of structure editing led us naturally to operator-precedence parsing,
given its unique token-centric approach to parsing. OP parsing proved a useful pivot point by
which to decompose parsing into top-down molding of tokens to tiles, and bottom-up melding
of tiles to terms. The melder encapsulates the basic concerns of reduction and is an unchanging
kernel underlying many different possible molding strategies. In our design of tall tylr, we
propose a simple method based on minimizing obligations. This seemed to work well for Hazel,
but it is unclear how well it would work in general. It would be useful in future work to show
parsing and completion behavioral guarantees for various molding strategies.

Our formal development of meldr unified and generalized two prior works on operator prece-
dence: Aasa’s semantics for precedence-annotated grammars and Floyd’s operator-precedence
parsing for unannotated grammars. We contribute in particular a novel elaboration from anno-
tated to unannotated grammars that addresses limitations in expressivity or complexity of pre-
vious approaches. Error-handling by obligation-based repair emerges as a natural extension of
Floyd’s original method, where completions arise as the intermediates components of precedence
walks between compared tokens.

85

This work has several directions for future work, including addressing remaining design and
theoretical limitations of tile-based editing and parsing, as well as capitalizing on the tile-based
approach to develop new features for program editing and analysis.
Rejecting Obligations. In our user study of tall tylr (§5.5), participants demanded more
direct ways of rejecting obligation-based completions. This challenges our structure-editor-born
design assumption thus far that obligations are always materialized and indeed obligatory to
discharge. It may be possible to uphold this assumption while meeting the demand for rejection
affordances by regenerating obligations elsewhere when they are deleted by the programmer—
e.g. in Fig. 5.34(B), when deleting the ghost closing parenthesis, it is “scooched” down to the next
viable position to its right (similar in effect to slurping in Paredit [13]).

Otherwise, if continuous materialization proves infeasible, it may still be useful to materialize
obligations on demand. Live programming environments often incorporate an execute command
that the programmer can invoke to update their live results after some set of modifications—
examples include tactic execution in proof assistants like Rocq and cell re-execution in notebooks
like Jupyter. This would be an appropriate moment for obligation materialization, such that the
programmer is guaranteed a live result while, in the case of a source error, they are shown how
the system chose to repair it. In this setting, obligations could be removed manually by the
programmer, or automatically cleaned up when appropriately discharged, but would only be
generated anew when explicitly requested.

Performance. There remain basic engineering challenges to scaling the performance of tile-
based parsing to larger programs. meldr has many points of nondeterminism, including choosing
molds, choosing completions, and choosing fills. tall tylr discharges these decisions simply by
trying them all at each juncture and choosing the result that minimizes obligations. As a result,
tall tylr can only handle programs of similar magnitude to our study tasks before responsive-
ness noticeably degrades. I suspect that many of these decisions can be precomputed at parser
generation time.

Eliminating Precedence Conflicts. The restricted grammar expressivity of OP parsing stems
from the requirement that the derived precedence comparisons be conflict-free: for any pair of
terminals 𝜏𝐿, 𝜏𝑅 , there exists at most one operator ⊙ ∈ {⋖,≐,⋗} such that 𝜏𝐿 ⊙ 𝜏𝑅 . This allows an
OP parser to proceed deterministically. A current gap in our theory of precedence elaboration
(§5.3.1) is its lack of guarantees for conflict-freedom.

I do not think the goal should be to eliminate all precedence conflicts. Suppose we extended

86

our Hazel PBG GHZ (Fig. 5.11) with if-expressions with optional else-branches:

GHZ(e, 0) ∶= GHZ(e, 0) ∣∣∣ if ⋅ e ⋅ then ⋅ e ⋅ (𝜖 ∣∣∣ else ⋅ e)

Elaborating this grammar and generating its precedence comparisons would lead to the conflict
then ≐ else and then ⋗ else —that is, when then and else are reduced neighbors, it is
not clear whether the two should match or if, possibly, the else should match with a different
then further to the left. This ambiguity, known as the dangling else problem [2], is commonly
resolved by preferring the ≐-comparison—that is, else always matches with the nearest then

to its left. This default disambiguation is easy to communicate to the programmer, an essential
reason being that a conflict involving an ≐-comparison necessarily involves terminals of a single
form (i.e. they appear in the same regex G(𝑠, 𝑝) for some sort 𝑠 and precedence 𝑝).

The problematic conflicts are ⋖/⋗ conflicts. Such conflicts typically involve terminals of differ-
ent forms, in which case there is rarely a reasonable default disambiguation, reasonable meaning
easily explained to and remembered by the programmer. I conjecture that our precedence elab-
oration already rules out ⋖/⋗ conflicts between tiles of the same sort. The possibility for conflict
remains between tiles of different sorts. Supposewe extended GHZwith another pattern-matching
form along with when-clauses in patterns, for some suitable precedence levels𝑚,𝑛:

GHZ(e,𝑚) ∶= GHZ(e,𝑚) ∣∣∣ p := e ; e

GHZ(p, 𝑛) ∶= GHZ(p, 𝑛) ∣∣∣ p when e

Elaborating and generating precedence comparisons leads to the conflict when ⋖ := and
when ⋗ := . I conjecture that precedence elaboration rules out all such ⋖/⋗ conflicts, includ-
ing between tiles of different sorts, provided the input PBG G additionally satisfies the following
assumption:

Assumption 3. There exists no pair of distinct sorts 𝑟, 𝑠 ∈ S and precedence levels 𝑝,𝑞 ∈ P such that
𝑠 ... ∈ JG(𝑟, 𝑝)K and ...𝑟 ∈ JG(𝑠,𝑞)K.

Molding and Completion Strategies. tall tylr uses obligation minimization to determine
how to mold tokens and choose completions (§5.4.1). Other measures and analyses could be used
also to guide these decisions. Completion choice would likely benefit from additional input from
type-checking, language models, explicit user preferences, etc.

tall tylr employs what wemight call an “LL” molding strategy: going left-to-right, it assigns
a single mold to each encountered token and never backtracks on an assignment. For this strategy
to work well (i.e. avoid ambiguous moldings that could later lead to excessive obligations), we

87

must similarly constrain the class of acceptable grammars. LL grammars must be left-factored (no
two production rules have yields with a common prefix) and avoid left recursion (a nonterminal
cannot produce a yield that starts with itself). PBGs and precedence elaboration lift the restriction
on left recursion, but the need for left-factoring remains. It would be useful to formalize these
constraints and guarantees.

Another direction for future inquiry would be to consider “LR” molding strategies. Where
LL parsers decide which form a token will reduce to as soon as it is encountered, LR parsers
delay this decision until they see the form in its entirety. An LR molding strategy would likely
require assigning multiple molds to a token and filtering prior assignments as additional context
is ingested.

Diekmann [23] considered the problem of composing arbitrary languages together into a sin-
gle editor, which in general introduces parsing ambiguities when the composed languages feature
overlapping syntactic forms. Their proposed system Eco uses language boxes to delineate tran-
sitions between different languages and resolve these ambiguities. These language boxes are a
meta-textual feature that, on their own, the programmer must insert and remove manually by
invoking editor commands. Recognizing that this can interrupt the programmer’s text-editing
flow, Diekmann and Tratt [24] proposed an algorithm for automatically inserting and removing
language boxes as the programmer types. Such methods may also be useful in the tile-based
setting for resolving molding ambiguities.

Modeling Editors and Incremental Parsing. meldr describes left-to-right batch parsing, but
extends trivially to modeling structured edit states and their navigation in tall tylr. tall tylr
models its edit state as a pair of inward-facing stacks, the point between them representing the
cursor. For example, using | to signify the cursor, tall tylr would parse and model the Hazel
edit state let y = b + m * x | in y * y as the pair of prefix and suffix stacks

* ⋖○ let ≐{ y } = ⋖{ b } + ⋖{ m } * ⋖○ x ∣ in ⋗{{ y } * { y }} ((6.1)

where the suffix stack uses ⋗-relations instead of ⋖-relations.
Note that this representation does not explicitly record the full term structure, instead defer-

ring the hierarchical relationships that may change on subsequent modification. To recover those
deferred relationships, we can simply zip (à la zippers [38]) the stacks together into a reduced
term, using precedence comparisons between the stack heads (the zipper “teeth”) to determine
which to reduce next, as shown in the following trace.

88

* ⋖○ let ≐{ y } = ⋖{ b } + ⋖{ m } * ⋖○ x ⋗○ in ⋗{{ y } * { y }} (

* ⋖○ let ≐{ y } = ⋖{ b } + ⋖{ m } * ⋗{ x } in ⋗{{ y } * { y }} (

* ⋖○ let ≐{ y } = ⋖{ b } + ⋗{{ m } * { x }} in ⋗{{ y } * { y }} (

* ⋖○ let ≐{ y } = ≐{{ b } + {{ m } * { x }}} in ⋗{{ y } * { y }} (

* ≐{ let { y } = {{ b } + {{ m } * { x }}} in {{ y } * { y }}} (

Further note that there is no additional parser state that needs to be persisted and interleaved
within this edit state model, thanks to the symbol-based organization of OP parsing. The pre-
dominant item-based approach to parsing (see §2.2.1) means that incremental parsers must ad-
ditionally persist (or regenerate as needed [65]) parser states representing the points in between
the symbols on the stack. Not only does the symbol-based approach of OP parsing have the de-
sign advantage that tokens have more visual surface area to decorate, thereby making it easier
to communicate parser state to the programmer, it also means that our models for edit states and
incremental parsers directly align without additional organizational effort. This is a simplifying
win for the design, theory, and implementation of incremental parsing.

Meanwhile, the bounded context property of OP parsing makes it trivial to define linear nav-
igation and selection of the edit state. Movement is simply defined as pulling off the head token
of the stack in the direction of movement and pushing it onto the opposite stack. Below are the
results of moving the cursor left and right around the edit state in (6.1), repeated here in the
middle row.

* ⋖○ let ≐{ y } = ⋖{ b } + ⋖{ m } * ∣ x ⋗○ in ⋗{{ y } * { y }} (

* ⋖○ let ≐{ y } = ⋖{ b } + ⋖{ m } * ⋖○ x ∣ in ⋗{{ y } * { y }} (

* ⋖○ let ≐{ y } = ≐{{ b } + {{ m } * { x }}} in ∣ y ⋗○ * ⋗{ y } (

Note that the terms {{ y } * { y }} and {{ b } + {{ m } * { x }}} are unrolled into cursor-
facing stacks once exposed.1 We may read this sequence of edit states top-to-bottom to see the
cursor moving right or bottom-to-top to see the cursor moving left. In the latter case, when we
pull in from the prefix stack and push it onto the suffix stack, we can perform this operation
independently from the remaining prefix tail, thanks to the bounded context property. This is not
the case for incremental forms of unbounded-prefix-dependent parsing methods like LL and LR,

1These unrollings correspond to the left and right breakdown operations employed byWagner [64] andDiekmann
[23], here performed during movement rather than there during incremental reparsing after a modification.

89

meaning editors based on these methods must define separate machinery for linear navigation.
The ability to directly repurpose incremental parsing operations this way further underscores the
advantage of organizing parsing around locally parsable tiles.

Dynamic Code Folding. Selection is defined similarly simply. A selected range is modeled as
a double-ended stack onto and fromwhich wemay push and pull tiles just as we did for movement
on the prefix and suffix stacks above. The following edit states depict various selected ranges that
start with the pattern tile y on the left.

(a) * ⋖○ let ∣ y ⋗○ = ≐{{ b } + {{ m } * { x }}} in ⋗{{ y } * { y }} (

(b) * ⋖○ let ∣ y ∣ = ≐{{ b } + {{ m } * { x }}} in ⋗{{ y } * { y }} (

(c) * ⋖○ let ∣ y ⋗○ = ∣ b ⋗○ + ⋗{{ m } * { x }} in ⋗{{ y } * { y }} (

(d) * ⋖○ let ∣ y ⋗○ = ⋖○ b ∣ + ⋗{{ m } * { x }} in ⋗{{ y } * { y }} (

(e) * ⋖○ let ∣ y ⋗○ = ⋖{ b } + ∣ m ⋗○ * ⋗{ x } in ⋗{{ y } * { y }} (

(f) * ⋖○ let ∣ y ⋗○ = ⋖{ b } + ⋖○ m ∣ * ⋗{ x } in ⋗{{ y } * { y }} (

(g) * ⋖○ let ∣ y ⋗○ = ⋖{ b } + ⋖{ m } * ∣ x ⋗○ in ⋗{{ y } * { y }} (

(h) * ⋖○ let ∣ y ⋗○ = ⋖{ b } + ⋖{ m } * ⋖○ x ∣ in ⋗{{ y } * { y }} (

(i) * ⋖○ let ∣ y ⋗○ = ≐{{ b } + {{ m } * { x }}} in ∣ y ⋗○ * ⋗{ y } (

(j) * ⋖○ let ∣ y ⋗○ = ≐{{ b } + {{ m } * { x }}} in ⋖○ y ∣ * ⋗{ y } (

The same selections are rendered in tall tylr as follows:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

90

(H)

(I)

(J)

tall tylr renders each stack level as a contiguous “cell” in the selected “honeycomb”, e.g. ⋖{ b }
+ in (e) as in (E). tall tylr additionally incorporates the delimiters surrounding the selec-
tion to merge cells that form a complete term, e.g. the multi-level stack ⋖{ b } + ⋖{ m } * ⋖○ x

in (h) rendered as the single merged cell in (H).
The significance of this range selectionmodel is: (1) it is maximally structured (maximal mean-

ing that additional reductions, i.e. cell merging, would require additional unselected tokens), and
(2) it is independent of its context. Editors based on unbounded-context parsing do not have
straightforward ways of achieving (2). One way to model range selections in this setting would
be to pair the overall program tree with the tree paths leading to the cursor endpoints of the selec-
tion, but this is an overparametrized definition, since the same range selection can be represented
in an infinite number of ways by varying its prefix and suffix in the overall tree. Meanwhile, in the
double-ended stack model, every range selection has a single canonical and context-independent
representation.

I am interested in exploiting this structured range model in the design of ubiquitous and dy-
namic code folding interfaces. Code folding lets the programmer collapse complete delimited
structures, such that they can achieve a bird’s-eye view of the surrounding structure. Contem-
porary interfaces require manually toggling the collapsed/expanded state of each structure and
often only surfaced for specific sets of delimiters (e.g. matching curly braces) in specific settings
like the editor pane containing an entire module. I avoid using them—despite often wanting
such abstracted views to minimize the constant scrolling and context-switching of large-scale
programming—because I find them unreliable and it too tedious tomanage themany toggle states.

The ability to structure any range selection means that we may start to incorporate code fold-
ing into more diverse settings. Imagine an interface of language model completions with progres-
sive disclosure of large or deeply nested completions. Imagine a selection interface that dynam-
ically folds its contents and/or the complete structural units nearby, such that large structures
could be easily selected in place without the context-switch required in contemporary editors to
navigate to the far-off endpoint of a large, purely textual selection. As programmers, we must
interact with ever growing syntactic structures and artifacts, an accelerating issue in the era of
generative artificial intelligence. It would behoove us to develop more ubiquitous and fluid inter-
faces for navigating these large structures at varying levels of abstraction.

91

BIBLIOGRAPHY

[1] 2018. Tree-Sitter. https://tree-sitter.github.io/. (Accessed: 2025-03-26).

[2] 2025. Dangling Else. Wikipedia (June 2025).

[3] Annika Aasa. 1995. Precedences in Specifications and Implementations of Program-
ming Languages. Theoretical Computer Science 142, 1 (May 1995), 3–26. doi:10.1016/
0304-3975(95)90680-J

[4] A. V. Aho, S. C. Johnson, and J. D. Ullman. 1975. Deterministic Parsing of Ambiguous Gram-
mars. Commun. ACM 18, 8 (Aug. 1975), 441–452. doi:10.1145/360933.360969

[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman (Eds.). 2007. Compilers:
Principles, Techniques, & Tools (2. ed., pearson internat. ed ed.). Pearson Addison-Wesley,
Boston Munich.

[6] R. Bahlke and G. Snelting. 1992. Design and Structure of a Semantics-Based Program-
ming Environment. International Journal of Man-Machine Studies 37, 4 (Oct. 1992), 467–479.
doi:10.1016/0020-7373(92)90005-6

[7] Alessandro Barenghi, Stefano Crespi Reghizzi, DinoMandrioli, Federica Panella, andMatteo
Pradella. 2015. Parallel Parsing Made Practical. Science of Computer Programming 112 (Nov.
2015), 195–226. doi:10.1016/j.scico.2015.09.002

[8] Alessandro Barenghi, Stefano Crespi Reghizzi, Dino Mandrioli, and Matteo Pradella. 2013.
Parallel Parsing of Operator Precedence Grammars. Inform. Process. Lett. 113, 7 (April 2013),
245–249. doi:10.1016/j.ipl.2013.01.008

[9] Tom Beckmann, Patrick Rein, Toni Mattis, and Robert Hirschfeld. 2022. Partial Parsing
for Structured Editors. In Proceedings of the 15th ACM SIGPLAN International Conference
on Software Language Engineering. ACM, Auckland New Zealand, 110–120. doi:10.1145/
3567512.3567522

[10] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert Hirschfeld. 2023.
Structured Editing for All: Deriving Usable Structured Editors from Grammars. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Hamburg
Germany, 1–16. doi:10.1145/3544548.3580785

[11] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dangprasert, and Janet Sieg-
mund. 2016. Efficiency of Projectional Editing: A Controlled Experiment. In Proceedings

92

https://tree-sitter.github.io/
https://doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/10.1145/360933.360969
https://doi.org/10.1016/0020-7373(92)90005-6
https://doi.org/10.1016/j.scico.2015.09.002
https://doi.org/10.1016/j.ipl.2013.01.008
https://doi.org/10.1145/3567512.3567522
https://doi.org/10.1145/3567512.3567522
https://doi.org/10.1145/3544548.3580785

of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (FSE 2016). Association for Computing Machinery, New York, NY, USA, 763–774.
doi:10.1145/2950290.2950315

[12] Neil C. C. Brown, Michael Kolling, and Amjad Altadmri. 2015. Position Paper: Lack of Key-
board Support Cripples Block-Based Programming. In 2015 IEEE Blocks and Beyond Work-
shop (Blocks and Beyond). 59–61. doi:10.1109/BLOCKS.2015.7369003

[13] Taylor R Campbell. 2022. Paredit — Parenthetical Editing in Emacs. https://paredit.
org/. (Accessed: 2025-09-15).

[14] VS Code. 2022. Syntax Highlight Guide. https://code.visualstudio.com/api/
language-extensions/syntax-highlight-guide. Accessed: 2022-05-30.

[15] Sam Cohen and Ravi Chugh. 2025. Code Style Sheets: CSS for Code. arXiv:2502.09386 [cs]
doi:10.1145/3720421

[16] Breandan Considine, Jin Guo, and Xujie Si. [n. d.]. Syntax Repair as Idempotent Tensor
Completion. ([n. d.]).

[17] G. V. Cormack. 1989. An LR Substring Parser for Noncorrecting Syntax Error Recovery.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design and
Implementation. ACM, Portland Oregon USA, 161–169. doi:10.1145/73141.74832

[18] Geoff Cumming. 2014. The New Statistics: Why and How. Psychological Science 25, 1 (2014),
7–29. doi:10.1177/0956797613504966

[19] Geoff Cumming and Sue Finch. 2005. Inference by Eye: Confidence Intervals and How to
Read Pictures of Data. The American Psychologist 60 (Feb. 2005), 170–80. doi:10.1037/
0003-066X.60.2.170

[20] Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mixfix Operators. In Implementa-
tion and Application of Functional Languages (Lecture Notes in Computer Science), Sven-
Bodo Scholz and Olaf Chitil (Eds.). Springer, Berlin, Heidelberg, 80–99. doi:10.1007/
978-3-642-24452-0_5

[21] Luís Eduardo de Souza Amorim and Eelco Visser. 2020. Multi-Purpose Syntax Definition
with SDF3. In Software Engineering and Formal Methods (Lecture Notes in Computer Science),
Frank de Boer and Antonio Cerone (Eds.). Springer International Publishing, Cham, 1–23.
doi:10.1007/978-3-030-58768-0_1

[22] Nicola Dell, Vidya Vaidyanathan, Indrani Medhi, Edward Cutrell, and William Thies. 2012.
‘Yours Is Better!’: Participant Response Bias in HCI. In CHI Conference on Human Factors in
Computing Systems, CHI ’12, Austin, TX, USA - May 05 - 10, 2012, Joseph A. Konstan, Ed H.
Chi, and Kristina Höök (Eds.). ACM, 1321–1330. doi:10.1145/2207676.2208589

[23] Lukas Diekmann. 2019. Editing Composed Languages. Ph. D. Dissertation. King’s College
London.

93

https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1109/BLOCKS.2015.7369003
https://paredit.org/
https://paredit.org/
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://code.visualstudio.com/api/language-extensions/syntax-highlight-guide
https://doi.org/10.1145/3720421
https://doi.org/10.1145/73141.74832
https://doi.org/10.1177/0956797613504966
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1037/0003-066X.60.2.170
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1145/2207676.2208589

[24] Lukas Diekmann and Laurence Tratt. 2020. Default Disambiguation for Online Parsers.
arXiv:1909.08557 [cs] doi:10.48550/arXiv.1909.08557

[25] Lukas Diekmann and Laurence Tratt. 2020. Don’t Panic! Better, Fewer, Syntax Errors for LR
Parsers. In DROPS-IDN/v2/Document/10.4230/LIPIcs.ECOOP.2020.6. Schloss-Dagstuhl - Leib-
niz Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.6

[26] Henning Dieterichs. 2021. Bracket pair colorization 10,000x faster. https://code.
visualstudio.com/blogs/2021/09/29/bracket-pair-colorization. Accessed: 2022-
05-30.

[27] Charles Fischer, Bernard Dion, and Jon Mauney. 1979. A Locally Least-Cost LR-Error Correc-
tor. Technical Report. University ofWisconsin-Madison Department of Computer Sciences.

[28] C. N. Fischer, D. R. Milton, and S. B. Quiring. 1980. Efficient LL(1) Error Correction and
Recovery Using Only Insertions. Acta Informatica 13, 2 (Feb. 1980), 141–154. doi:10.1007/
BF00263990

[29] Robert W. Floyd. 1963. Syntactic Analysis and Operator Precedence. J. ACM 10, 3 (July
1963), 316–333. doi:10.1145/321172.321179

[30] Susan L. Graham and Steven P. Rhodes. 1975. Practical Syntactic Error Recovery. Commun.
ACM 18, 11 (Nov. 1975), 639–650. doi:10.1145/361219.361223

[31] T. R. G. Green and M. Petre. 1996. Usability Analysis of Visual Programming Environments:
A ‘Cognitive Dimensions’ Framework. Journal of Visual Languages & Computing 7, 2 (June
1996), 131–174. doi:10.1006/jvlc.1996.0009

[32] Sheila A. Greibach. 1965. A New Normal-Form Theorem for Context-Free Phrase Structure
Grammars. J. ACM 12, 1 (Jan. 1965), 42–52. doi:10.1145/321250.321254

[33] Dick Grune and Ceriel J.H. Jacobs. 2008. Parsing Techniques: A Practical Guide (2 ed.).
Springer, New York, NY, USA.

[34] Wilfred J. Hansen. 1971. Creation of Hierarchic Text with a Computer Display. Ph. D. Disser-
tation. Stanford University.

[35] D. S. Henderson andM. R. Levy. 1976. An Extended Operator Precedence Parsing Algorithm.
Comput. J. 19, 3 (Jan. 1976), 229–233. doi:10.1093/comjnl/19.3.229

[36] Robert Holwerda and Felienne Hermans. 2018. A Usability Analysis of Blocks-based
Programming Editors Using Cognitive Dimensions. In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 217–225. doi:10.1109/VLHCC.2018.
8506483

[37] Michael Homer and James Noble. 2013. A Tile-Based Editor for a Textual Programming
Language. In 2013 First IEEE Working Conference on Software Visualization (VISSOFT). 1–4.
doi:10.1109/VISSOFT.2013.6650546

94

https://doi.org/10.48550/arXiv.1909.08557
https://doi.org/10.4230/LIPIcs.ECOOP.2020.6
https://code.visualstudio.com/blogs/2021/09/29/bracket-pair-colorization
https://code.visualstudio.com/blogs/2021/09/29/bracket-pair-colorization
https://doi.org/10.1007/BF00263990
https://doi.org/10.1007/BF00263990
https://doi.org/10.1145/321172.321179
https://doi.org/10.1145/361219.361223
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1145/321250.321254
https://doi.org/10.1093/comjnl/19.3.229
https://doi.org/10.1109/VLHCC.2018.8506483
https://doi.org/10.1109/VLHCC.2018.8506483
https://doi.org/10.1109/VISSOFT.2013.6650546

[38] Gérard Huet. 1997. The Zipper. Journal of Functional Programming 7, 5 (Sept. 1997), 549–554.
doi:10.1017/S0956796897002864

[39] Lennart C.L. Kats and Eelco Visser. 2010. The Spoofax Language Workbench: Rules for
Declarative Specification of Languages and IDEs. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications. ACM,
Reno/Tahoe Nevada USA, 444–463. doi:10.1145/1869459.1869497

[40] Paul Klint and Eelco Visser. 1994. Using Filters for the Disambiguation of Context-free
Grammars. (1994).

[41] Donald E. Knuth. 1965. On the Translation of Languages from Left to Right. Information
and Control 8, 6 (Dec. 1965), 607–639. doi:10.1016/S0019-9958(65)90426-2

[42] Michael Kölling. 2010. The Greenfoot Programming Environment. ACM Trans. Comput.
Educ. 10, 4 (Nov. 2010), 14:1–14:21. doi:10.1145/1868358.1868361

[43] M. R. Levy. 1975. Complete Operator Precedence. Inform. Process. Lett. 4, 2 (Nov. 1975),
38–40. doi:10.1016/0020-0190(75)90010-1

[44] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010.
The Scratch Programming Language and Environment. ACM Transactions on Computing
Education 10, 4 (Nov. 2010), 1–15. doi:10.1145/1868358.1868363

[45] Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. 1994. Evolution of Novice Pro-
gramming Environments: The Structure Editors of Carnegie Mellon University. Interactive
Learning Environments 4, 2 (Jan. 1994), 140–158. doi:10.1080/1049482940040202

[46] DavidMoon, AndrewBlinn, and CyrusOmar. 2022. Tylr: A Tiny Tile-Based Structure Editor.
In Proceedings of the 7th ACM SIGPLAN International Workshop on Type-Driven Development.
ACM, Ljubljana Slovenia, 28–37. doi:10.1145/3546196.3550164

[47] David Moon, Andrew Blinn, and Cyrus Omar. 2023. Gradual Structure Editing with
Obligations. In 2023 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Washington, DC, USA, 71–81. doi:10.1109/VL-HCC57772.2023.00016

[48] DavidMoon, Andrew Blinn, Thomas J. Porter, and Cyrus Omar. 2025. Syntactic Completions
with Material Obligations. arXiv:2508.16848 [cs] doi:10.48550/arXiv.2508.16848

[49] JetBrains MPS. 2021. MPS Intentions. https://www.jetbrains.com/help/mps/
mps-intentions.html. Accessed: 2022-05-30.

[50] David Notkin. 1985. The GANDALF Project. Journal of Systems and Software 5, 2 (May
1985), 91–105. doi:10.1016/0164-1212(85)90011-1

[51] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi Chugh. 2021.
Filling Typed Holes with Live GUIs. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation. ACM, Virtual Canada,
511–525. doi:10.1145/3453483.3454059

95

https://doi.org/10.1017/S0956796897002864
https://doi.org/10.1145/1869459.1869497
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1145/1868358.1868361
https://doi.org/10.1016/0020-0190(75)90010-1
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1080/1049482940040202
https://doi.org/10.1145/3546196.3550164
https://doi.org/10.1109/VL-HCC57772.2023.00016
https://doi.org/10.48550/arXiv.2508.16848
https://www.jetbrains.com/help/mps/mps-intentions.html
https://www.jetbrains.com/help/mps/mps-intentions.html
https://doi.org/10.1016/0164-1212(85)90011-1
https://doi.org/10.1145/3453483.3454059

[52] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019. Live Functional
Programming with Typed Holes. Proceedings of the ACM on Programming Languages 3,
POPL (Jan. 2019), 1–32. doi:10.1145/3290327

[53] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer. 2017.
Hazelnut: A Bidirectionally Typed Structure Editor Calculus. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL ’17). Association for
Computing Machinery, New York, NY, USA, 86–99. doi:10.1145/3009837.3009900

[54] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer.
2017. Hazelnut: A Bidirectionally Typed Structure Editor Calculus. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 86–99.
doi:10.1145/3009837

[55] Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan
Aldrich, and Matthew A. Hammer. 2017. Toward Semantic Foundations for Program Ed-
itors. arXiv:1703.08694 [cs]

[56] Jacob Prinz, Henry Blanchette, and Leonidas Lampropoulos. 2025. Pantograph: A Fluid
and Typed Structure Editor. Pantograph Implementation 9, POPL (Jan. 2025), 28:802–28:831.
doi:10.1145/3704864

[57] Helmut Richter. 1985. Noncorrecting Syntax Error Recovery. ACM Transactions on Program-
ming Languages and Systems 7, 3 (July 1985), 478–489. doi:10.1145/3916.4019

[58] Friedrich Steimann and Robin Stunic. 2024. The Linguistic Theory behind Blockly Lan-
guages. In Proceedings of the 17th ACM SIGPLAN International Conference on Software Lan-
guage Engineering (SLE ’24). Association for Computing Machinery, New York, NY, USA,
113–129. doi:10.1145/3687997.3695636

[59] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer: A Syntax-
Directed Programming Environment. Commun. ACM 24, 9 (Sept. 1981), 563–573. doi:10.
1145/358746.358755

[60] Mauricio Verano Merino, Tom Beckmann, Tijs van der Storm, Robert Hirschfeld, and
Jurgen J. Vinju. 2021. Getting Grammars into Shape for Block-Based Editors. In Pro-
ceedings of the 14th ACM SIGPLAN International Conference on Software Language Engi-
neering (SLE 2021). Association for Computing Machinery, New York, NY, USA, 83–98.
doi:10.1145/3486608.3486908

[61] Mauricio Verano Merino and Tijs van der Storm. 2020. Block-Based Syntax from Context-
Free Grammars. In Proceedings of the 13th ACM SIGPLAN International Conference on Soft-
ware Language Engineering (SLE 2020). Association for Computing Machinery, New York,
NY, USA, 283–295. doi:10.1145/3426425.3426948

[62] Markus Voelter and Vaclav Pech. 2012. Language Modularity with the MPS Language
Workbench. In 2012 34th International Conference on Software Engineering (ICSE). 1449–1450.
doi:10.1109/ICSE.2012.6227070

96

https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3704864
https://doi.org/10.1145/3916.4019
https://doi.org/10.1145/3687997.3695636
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/3486608.3486908
https://doi.org/10.1145/3426425.3426948
https://doi.org/10.1109/ICSE.2012.6227070

[63] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian Erdweg, and Thorsten
Berger. 2016. Efficient Development of Consistent Projectional Editors Using Grammar
Cells. In Proceedings of the 2016 ACM SIGPLAN International Conference on Software Lan-
guage Engineering (SLE 2016). Association for Computing Machinery, New York, NY, USA,
28–40. doi:10.1145/2997364.2997365

[64] Tim A Wagner. 1998. Practical Algorithms for Incremental Software Development Environ-
ments. Ph. D. Dissertation.

[65] Tim A.Wagner and Susan L. Graham. 1998. Efficient and Flexible Incremental Parsing. ACM
Transactions on Programming Languages and Systems 20, 5 (Sept. 1998), 980–1013. doi:10.
1145/293677.293678

[66] Tim A Wagner and Susan L Graham. 1999. History-Sensitive Error Recovery. (1999).

[67] DavidWeintrop. 2019. Block-Based Programming in Computer Science Education. Commun.
ACM 62, 8 (July 2019), 22–25. doi:10.1145/3341221

[68] Niklaus Wirth and Helmut Weber. 1966. EULER: A Generalization of ALGOL and Its Formal
Definition: Part 1. Commun. ACM 9, 1 (Jan. 1966), 13–25. doi:10.1145/365153.365162

[69] Yongwei Yuan, Scott Guest, Eric Griffis, Hannah Potter, David Moon, and Cyrus Omar. 2023.
Live PatternMatchingwith TypedHoles. Proceedings of the ACM on Programming Languages
7, OOPSLA1 (April 2023), 609–635. doi:10.1145/3586048

[70] Eric Zhao, Raef Maroof, Anand Dukkipati, Andrew Blinn, Zhiyi Pan, and Cyrus Omar. 2024.
Total Type Error Localization and Recovery with Holes. Proceedings of the ACM on Program-
ming Languages 8, POPL (Jan. 2024), 2041–2068. doi:10.1145/3632910

97

https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/3341221
https://doi.org/10.1145/365153.365162
https://doi.org/10.1145/3586048
https://doi.org/10.1145/3632910

Appendix A

Proofs for §5.3

In this appendix, we will use the following shorthand notations:

𝜎 ◃ 𝜒 ≜ 𝜎 ⇒ 𝜒 ...

𝜒𝐿 ◽ 𝜒𝑅 ≜ ∃𝜎. 𝜎 ⇒ ... 𝜒𝐿𝜒𝑅 ...

𝜒 ▹ 𝜎 ≜ 𝜎 ⇒ ... 𝜒

𝜎 ▵ 𝜒 ≜ 𝜎 ⇒ ... 𝜒 ...

A.1 Precedence Comparisons
Lemmas 3-7 follow by inspection of the elaboration (Fig. 5.15) and injection (Fig. 5.23) rules.

Lemma 3 (Homogeneity). If 𝜏𝐿 ≐◻ 𝜏𝑅 then either

• 𝜏𝐿 = * and 𝜏𝑅 = (;
• 𝜏𝐿 = 𝑡𝐿 and 𝜏𝑅 = 𝑡𝑅 for some tiles 𝑡𝐿, 𝑡𝑅 ; or

• 𝜏𝐿 = 𝛾𝑠𝐿 and 𝜏𝑅 = 𝛾𝑠𝑅 for some grout 𝛾𝐿,𝛾𝑅 and sort 𝑠 .

Lemma 4 (Grout Precedence). The following statements hold:

• If 𝛾 is left-convex, then 𝜏 ⊙𝜎? 𝛾𝑠 if and only if 𝜎? = ○ and ⊙ = ⋖.
If 𝛾 is right-convex, then 𝛾𝑠 ⊙𝜎? 𝜏 if and only if 𝜎? = ○ and ⊙ = ⋗.

• If 𝛾𝑅 is left-concave, then 𝜏 ≐𝜎? 𝛾𝑠𝑅 if and only if 𝜎? = ●0𝑠0 and 𝜏 = 𝛾𝑠
𝐿
is right-concave.

If 𝛾𝐿 is right-concave, then 𝛾𝑠𝐿 ≐𝜎? 𝜏 if and only if 𝜎? = ●0𝑠0 and 𝜏 = 𝛾𝑠
𝑅
is left-concave.

Lemma 5 (Start Matches End). * ≐𝜎? 𝜏 if and only if 𝜎? = ●�𝑠� and 𝜏 = (.

Lemma 6 (No Escaping). There exists no 𝜏 such that 𝜏 ⋖ (or * ⋗ 𝜏 .

Lemma 7 (No Trespassing). There exists no 𝜏 and ⊙ such that 𝜏 ⊙ * or (⊙ 𝜏 .

Lemma 8 (Root-Grout Delimits Tiles). If 𝛾 is right-concave, then for all tiles 𝑡 , there exist slots
[𝜎?𝑖]0≤𝑖≤𝑘 and tiles [𝑡𝑖]0≤𝑖≤𝑘 such that 𝛾𝑠 ⋖𝜎?0 𝑡0[≐𝜎?𝑖 𝑡𝑖]1≤𝑖≤𝑘 = 𝑡 .

98

Proof. By Assumption 2 (Unique Tiles), there exists sort 𝑠 and precedence 𝑝 such that ...𝑡 ... ∈
JG(𝑠, 𝑝)K. By Assumption 1 (Operator Form), there exist optional sorts [𝑠?𝑖]0≤𝑖≤𝑛+1 and tiles
[𝑡𝑖]0≤𝑖≤𝑛 such that 𝑡𝑘 = 𝑡 for some 𝑘 ≤ 𝑛 and

𝑠?0[𝑡𝑖𝑠?𝑖+1]0≤𝑖≤𝑛 ∈ JG(𝑠, 𝑝)K (A.1)

Depending on whether 𝑠?0 = 𝑠 and 𝑠?𝑛+1 = 𝑠 , apply one of the elaboration rules in Fig. 5.15 to (A.1)
to construct a production rule for 0

𝑠
0, knowing that 0 ≺𝑠 𝑝 and 𝑝 ≻𝑠 0 as needed. Across all cases,

we can show

0
𝑠
0⇒ ...𝑡0[⌈𝑠?𝑖⌉ 𝑡𝑖]1≤𝑖≤𝑛 ... (A.2)

Define [𝜎?𝑖 = ⌈𝑠?𝑖⌉]0≤𝑖≤𝑛 . Prec-EQ applied to (A.2) gives us

[𝑡𝑖 ≐𝜎?𝑖 𝑡𝑖+1]0≤𝑖<𝑛 (A.3)

It remains to show 𝛾𝑠 ⋖𝜎?0 𝑡0. It can be shown using one of the injection rules in Fig. 5.23 that
𝛾𝑠 ◽ 0𝑠0.

Lemma 9 (Reachability). For every tile 𝑡 , there exist slots [𝜎?𝑖]1≤𝑖≤𝑘 and tiles [𝑡𝑖]1≤𝑖≤𝑘 such that
*[t𝜎?𝑖 𝑡𝑖]1≤𝑖≤𝑘 = 𝑡 .

Proof. Follows from * ⋖○ 𝑠 (since * ◽ �𝑠� ◃ 𝑠) and Lemma 8 (Root-Grout Delimits Tiles).

A.2 Precedence Bounds
Lemmas 10-13 follow by inspection of the elaboration (Fig. 5.15) and injection (Fig. 5.23) rules.

Lemma 10. If 𝑝𝑠◻⇒ 𝑞
𝑠
𝑚
𝑡 ... then 𝑝 ≼𝑠 𝑞 ≺𝑠 𝑚.

Lemma 11. If 𝑝𝑠𝑞 ◃∗ 𝑚𝑟𝑛 and 𝑠 ≠ 𝑟 then 𝑝
𝑠
𝑞 ◃∗ �𝑟�.

Lemma 12. If 𝑡 ◽ 𝑝𝑠𝑞 then 𝑡 ◽ 𝑝𝑠�.

Lemma 13. If 𝜎 ◃∗ 𝜌 and 𝜎 ∼ 𝑠 then either 𝜌 ∼ 𝑠 or 𝜎 ⇒ 𝜌 𝑠 .

Lemma 14. If 𝜌 ⇒∗ 𝜎?𝜏 ... then there exists a nonterminal 𝜎 such that

𝜌 ⇒∗ 𝜎 ⇒ 𝜎?𝜏

Proof. Wewill show a slight generalization: if 𝜌 ⇒+ 𝜎?𝜏... then there exists a nonterminal 𝜎 such
that 𝜌 ⇒∗ 𝜎 ⇒ 𝜎?𝜏 This is a proper generalization, despite the use of ⇒+ instead of ⇒∗,
because 𝜌 ≠ 𝜎?𝜏 ... and therefore 𝜌 ⇒∗ 𝜎?𝜏 ... implies 𝜌 ⇒+ 𝜎?𝜏 ... , which implies 𝜌 ... ⇒+ 𝜎?𝜏
We will assume here that every yield step 𝜒0 ⇒ 𝜒1 is a leftmost yield, meaning it rewrites the
leftmost nonterminal in 𝜒0.

Induct on the premise 𝜌 ... ⇒+ 𝜎?𝜏 ...:

99

• Suppose 𝜌 ... ⇒ 𝜎?𝜏 Our assumption of leftmost yields implies 𝜌 ⇒ 𝜎?𝜏 ... , so returning
𝜎 = 𝜌 gives 𝜌 ⇒∗ 𝜎?𝜏 as desired.

• Suppose 𝜌 ... ⇒ 𝜒 ⇒+ 𝜎?𝜏
Further suppose 𝜒 = 𝜌1 ... for some nonterminal 𝜌1. Then our assumption of leftmost yields
implies 𝜌 ◃𝜌1, and our inductive hypothesis gives us 𝜎 such that 𝜌1⇒∗ 𝜎 ⇒ 𝜎?𝜏 Putting
it altogether, we have 𝜌 ⇒∗ 𝜎 ⇒ 𝜎?𝜏 as desired.
Otherwise, assume 𝜒 = 𝜏1 ... for some terminal 𝜏1. Given 𝜌 ... ⇒ 𝜏1 ... , our assumption of
leftmost yields implies 𝜌 ⇒ 𝜏1 Given 𝜏1 ... ⇒+ 𝜎?𝜏 ... , it must be that 𝜎? = ○ and 𝜏1 = 𝜏 . It
follows that setting 𝜎 = 𝜌 gives 𝜌 ⇒∗ 𝜎 ⇒ 𝜏1 ... = 𝜎?𝜏 as desired.

Lemma 15. If 𝜏𝐿 ⋖𝜌? 𝜏𝑅 , then there exists a nonterminal 𝜎 = ◻𝑠� such that 𝜏𝐿 ◽𝜎 and 𝜎 ⇒∗ 𝜌?𝜏𝑅

Proof. Invert the premise 𝜏𝐿 ⋖𝜌? 𝜏𝑅 to get nonterminal 𝜌 = 𝑝
𝑠
𝑞 such that

𝜏𝐿 ◽ 𝜌 (A.4)
𝜌 ⇒∗ 𝜌?𝜏𝑅 ... (A.5)

Let 𝜎 = 𝑝
𝑠
�. Apply Lemma 12 to (A.4) to get 𝜏𝐿 ◽ 𝜎 . Since 𝑞 ≽𝑠 � by definition, we have by rule

Produce-Tighten that 𝜎 ⇒ 𝜌 , which together with (A.5) gives 𝜎 ⇒∗ 𝜌?𝜏𝑅 ... as desired.

A.3 Proof of Theorem 1
For all sorts 𝑠 , precedence levels 𝑝𝐿, 𝑝𝑅 , and tiles 𝑡𝐿, 𝑡𝑅 such that ... 𝑡𝐿𝑠 ∈ JG(𝑠, 𝑝𝐿)K and 𝑠𝑡𝑅 ... ∈
JG(𝑠, 𝑝𝑅)K, the following equivalences hold:

𝑡𝐿 ⋖ 𝑡𝑅 ⇐⇒ 𝑝𝐿 < 𝑝𝑅
𝑡𝐿 ⋗ 𝑡𝑅 ⇐⇒ 𝑝𝐿 > 𝑝𝑅

Proof. We assume the premises. Beginning with the left-to-right direction of the first equiva-
lence, we also assume that 𝑡𝐿 ⋖ 𝑡𝑅 . By repeated rule inversion, we obtain 𝑎

𝑠
𝑏 ⇐ ... 𝑡𝐿

𝑐
𝑠
𝑑 and

𝑑+
𝑠
𝑑+ ⇐ 𝑒

𝑠
𝑓
𝑡𝑅 ... , for some precedences 𝑎,𝑏, 𝑐,𝑑, 𝑒, 𝑓 such that 𝑐 ≤ 𝑐+ and 𝑑+ ≥ 𝑑 (the result of

Produce-Tighten). Applying rule inversion once more to each yields the inequalities 𝑝𝐿 < 𝑐 and
𝑐+ = min(𝑒, 𝑝𝑅). Together we have 𝑝𝐿 < 𝑐 ≤ 𝑐+ ≤ 𝑝𝑅 , completing the implication.

For the other direction, we assume that 𝑝𝐿 < 𝑝𝑅 . We will first derive 𝑎
𝑠
𝑝𝑅 ⇐ ...𝑡𝐿

𝑝𝑅𝑠
𝑝𝑅 for some

extension ...and some precedence 𝑎. In the case that the prefix of ...𝑡𝐿𝑠 begins with 𝑠 , PElab-Infix
is used, with the bounds of each 𝜒𝑖 being ⊺ except for 𝜒𝑘 = 𝑝𝑅𝑠

𝑝𝑅 . The premises are satisfied with
...𝑡𝐿𝑠 ∈ JG(𝑠, 𝑝𝐿)K, ⊺ > 𝑝𝐿 < 𝑝𝑅 , and 𝑝𝐿 = min(𝑝𝐿, 𝑝𝑅). The case when the prefix does not begin
with 𝑠 is analogous, with PElab-Prefix used instead.

From this reduction judgment we obtain 𝑡𝐿 ◽ 𝑝𝑅𝑠𝑝𝑅 , the first premise to our desired conclusion.
For the second premise, it suffices to show that 𝑎

𝑠
𝑝𝑅 ⇐ ⊺

𝑠
⊺
𝑡𝑅 ... , which we obtain from 𝑠𝑡𝑅 ... ∈

JG(𝑠, 𝑝𝑅)K via PElab-Infix or PElab-Postfix as needed, with ⊺ > 𝑝𝑅 < ⊺ and 𝑝𝑅 = min(𝑝𝑅,⊺).
The second equivalence is proven symmetrically.

100

A.4 Proof of Lemma 1 (Valid Prefixes)
Lemma 16 (Splice). Suppose symbol 𝑥 appears uniquely in regex 𝑔. If 𝑥𝐿𝑥 ... ∈ J𝑔K and ...𝑥𝑥𝑅 ∈ J𝑔K,
then 𝑥𝐿𝑥𝑥𝑅 ∈ J𝑔K.
Proof. Proceed by induction on 𝑔. Start each case by assuming the premises:

𝑥𝐿𝑥𝑦𝑅 ∈ J𝑔K (A.6)
𝑦𝐿𝑥𝑥𝑅 ∈ J𝑔K (A.7)

• 𝑔 = 𝜖 : Impossible, cannot derive a nonempty string.
• 𝑔 = 𝑥0: Then 𝑥0 = 𝑥 and 𝑥𝐿 = 𝑦𝐿 = 𝑥𝑅 = 𝑦𝑅 = ○ and we have the goal by assumption.
• 𝑔 = 𝑔𝐿 ∣∣∣ 𝑔𝑅 : 𝑥 appears in either 𝑔𝐿 or 𝑔𝑅—assume 𝑔𝐿 without loss of generality. Then

𝑥𝐿𝑥𝑦𝑅 ∈ J𝑔𝐿K (A.8)
𝑦𝐿𝑥𝑥𝑅 ∈ J𝑔𝐿K (A.9)

By the inductive hypothesis, we have 𝑥𝐿𝑥𝑥𝑅 ∈ J𝑔𝐿K and therefore 𝑥𝐿𝑥𝑥𝑅 ∈ J𝑔𝐿K ∪ J𝑔𝑅K = J𝑔K.
• 𝑔 = 𝑔𝐿 ⋅𝑔𝑅 : 𝑥 appears in either 𝑔𝐿 or 𝑔𝑅—assume 𝑔𝐿 without loss of generality.
There exists partitions 𝑦𝑅 = 𝑦ℓ𝑦𝑟 and 𝑥𝑅 = 𝑥 ℓ𝑥𝑟 such that

𝑥𝐿𝑥𝑦ℓ ∈ J𝑔𝐿K (A.10)
𝑦𝑟 ∈ J𝑔𝑅K (A.11)

𝑦𝐿𝑥𝑥 ℓ ∈ J𝑔𝐿K (A.12)
𝑥𝑟 ∈ J𝑔𝑅K (A.13)

Apply the inductive hypothesis to (A.10) and (A.12) to get 𝑥𝐿𝑥𝑥 ℓ ∈ J𝑔𝐿K, which combined with
(A.13) gives 𝑥𝐿𝑥𝑥𝑅 = 𝑥𝐿𝑥𝑥 ℓ𝑥𝑟 ∈ J𝑔𝐿 ⋅𝑔𝑅K.

• 𝑔 = 𝑔∗0 :
There exist𝑚,𝑛 ∈ N such that

𝑥𝐿𝑥𝑦𝑅 ∈ J𝑔𝑚0 K (A.14)
𝑦𝐿𝑥𝑥𝑅 ∈ J𝑔𝑛0K (A.15)

We know𝑚 > 0 and 𝑛 > 0 because 𝑔00 = 𝜖 derives only the empty string, meaning

𝑥𝐿𝑥𝑦𝑅 ∈ J𝑔0 ⋅𝑔𝑚−10 K (A.16)
𝑦𝐿𝑥𝑥𝑅 ∈ J𝑔0 ⋅𝑔𝑛−10 K (A.17)

Case analysis on whether 𝑥 appears in 𝑔𝑚−10 and in 𝑔𝑛−10 :

– Suppose 𝑥 appears in 𝑔𝑚−10 i.e. there exists partition 𝑥𝐿 = 𝑥 ℓ𝑥𝑟 such that

𝑥 ℓ ∈ J𝑔0K (A.18)
𝑥𝑟𝑥𝑦𝑅 ∈ J𝑔𝑚−10 K (A.19)

101

Apply the inductive hypothesis to (A.19) and (A.15) to get 𝑥𝑟𝑥𝑥𝑅 ∈ J𝑔∗0 K, which combined
with (A.18) gives

𝑥𝐿𝑥𝑥𝑅 = 𝑥 ℓ ⋅ 𝑥𝑟𝑥𝑥𝑅 ∈ J𝑔0 ⋅𝑔∗0 K = J𝑔∗0 K (A.20)

– Suppose 𝑥 appears in 𝑔𝑛−10 i.e. there exists partition 𝑦𝐿 = 𝑦ℓ𝑦𝑟 such that

𝑦ℓ ∈ J𝑔0K (A.21)
𝑦𝑟𝑥𝑥𝑅 ∈ J𝑔𝑛−10 K (A.22)

Apply the inductive hypothesis to (A.14) and (A.22) to get

𝑥𝐿𝑥𝑥𝑅 ∈ J𝑔𝑚0 ⋅𝑔𝑛−10 K ⊆ J𝑔∗0 K (A.23)

– Suppose 𝑥 appears in neither 𝑔𝑚−10 nor 𝑔𝑛−10 . Then there exist partitions 𝑦𝑅 = 𝑦ℓ𝑦𝑟 and
𝑥𝑅 = 𝑥 ℓ𝑥𝑟 such that

𝑥𝐿𝑥𝑦𝑟 ∈ J𝑔0K (A.24)
𝑦𝐿𝑥𝑥𝑟 ∈ J𝑔0K (A.25)
𝑦𝑟 ∈ J𝑔𝑚−10 K (A.26)
𝑦𝑟 ∈ J𝑔𝑛−10 K (A.27)

Apply the same argument as in the case 𝑔 = 𝑔𝐿 ⋅𝑔𝑅 to reach the goal.

Proof of Lemma 1 (Valid Prefixes). Assume the premises

𝜏 ⋖𝜌?0 𝑡0 (A.28)

[𝑡𝑖−1 ≐𝜌?𝑖 𝑡𝑖]0<𝑖≤𝑘 (A.29)

𝑡𝑘 ◽ 𝜌?𝑘+1 (A.30)

Apply Lemma 15 to (A.28) to get nonterminal 𝜎𝜏 = 𝑚
𝑠𝜏
� such that

𝜏 ◽ 𝜎𝜏 (A.31)
𝜎𝜏 ⇒∗ 𝜌?0𝑡0 ... (A.32)

Apply Lemma 14 to (A.32) to get nonterminal 𝜎0 such that

𝜎𝜏 ⇒∗ 𝜎0 ... (A.33)
𝜎0⇒ 𝜌?0𝑡0 ... (A.34)

Invert (A.29) to get nonterminals [𝜎𝑖]0<𝑖≤𝑘 such that

[𝜎𝑖 ⇒ ...𝑡𝑖−1𝜌?𝑖𝑡𝑖 ...]0<𝑖≤𝑘 (A.35)

102

Finally, unabbreviate (A.30) to get nonterminal 𝜎𝑘+1 such that

𝜎𝑘+1⇒ ...𝑡𝑘𝜌?𝑘+1 ... (A.36)

First, wewill show that the productions in (A.34)-(A.36) are backed by a shared derivation from
some regex in G, given Assumption 2 (Unique Tiles). Letting [𝜎𝑖 = 𝑝𝑖𝑠𝑖

𝑞𝑖]
0≤𝑖≤𝑘 , invert (A.34)-(A.36)

by rule Produce-Subsume to get

𝑝0𝑠0
𝑞0 ⇐ 𝜌?0𝑡0 ... (A.37)

[𝑝𝑖𝑠𝑖𝑞𝑖 ⇐ ...𝑡𝑖−1𝜌?𝑖𝑡𝑖 ...]0<𝑖≤𝑘 (A.38)
𝑝𝑘+1𝑠𝑘+1

𝑞𝑘+1 ⇐ ...𝑡𝑘𝜌?𝑘+1 ... (A.39)

Invert again to get precedence levels [𝑛𝑖]0≤𝑖≤𝑘+1 and optional sorts [𝑟?𝑖]0≤𝑖≤𝑘+1𝑥 such that

[𝜌?𝑖 ∼ 𝑟?𝑖]0≤𝑖≤𝑘+1 (A.40)
𝑟?0𝑡0 ... ∈ JG(𝑠0, 𝑛0)K (A.41)

[...𝑡𝑖−1𝑟?𝑖𝑡𝑖 ... ∈ JG(𝑠𝑖, 𝑛𝑖)K]0<𝑖≤𝑘 (A.42)
...𝑡𝑘𝑟?𝑘+1 ... ∈ JG(𝑠𝑘+1, 𝑛𝑘+1)K (A.43)

Assumption 2 (Unique Tiles) applied to (A.41)-(A.43) gives us sort 𝑠 and precedence 𝑛 such that

[𝑠 = 𝑠𝑖]0≤𝑖≤𝑘+1 (A.44)
[𝑛 = 𝑛𝑖]0≤𝑖≤𝑘+1 (A.45)

Given (A.44) and (A.45), we can now apply Lemma 16 (Splice) to (A.41)-(A.43) to get

[𝑟?𝑖𝑡𝑖]0≤𝑖≤𝑘 𝑟?𝑘+1 𝑥 ∈ JG(𝑠,𝑛)K (A.46)

for some symbol sequence 𝑥 , as desired. By Assumption 1 (Operator Form), we can rewrite 𝑥
with optional sorts [𝑟?𝑖]𝑘+1<𝑖≤ℓ+1 and tiles [𝑡𝑖]𝑘<𝑖≤ℓ such that

𝑟?0[𝑡𝑖𝑟?𝑖+1]0≤𝑖≤ℓ ∈ JG(𝑠,𝑛)K (A.47)

Now it remains to determine bounds 𝑝,𝑞, tiles [𝑡𝑖]𝑘<𝑖≤ℓ , and slots [𝜌?𝑖]𝑘+1<𝑖≤ℓ+1 such that

𝜎𝜏 ⇒∗ 𝑝
𝑠
𝑞
... (A.48)

𝑝
𝑠
𝑞 ⇐ 𝜌?0[𝑡𝑖 𝜌?𝑖+1]0≤𝑖≤ℓ (A.49)

Wewill show (A.49) using one of the elaboration rules in Fig.5.15. Determiningwhich elaboration
rule to use requires case analysis on whether 𝑟?0 = ●𝑠 and 𝑟?ℓ+1 = ●𝑠 . Without loss of generality,
assume 𝑟?0 = ●𝑠 and 𝑟?ℓ+1 ≠ ●𝑠 .

Proceed by case analysis on whether 𝑠𝜏 = 𝑠:

103

• Suppose 𝑠𝜏 ≠ 𝑠 . Rewrite (A.33) with (A.44) to get 𝜎𝜏 ◃∗ ◻𝑠◻, then apply Lemma 11 to get

𝜎𝜏 ◃∗ �𝑠� (A.50)

Pick 𝑝 = � and 𝑞 = � to reach (A.48).
It remains to construct slots [𝜌?𝑖]𝑘+1<𝑖≤ℓ+1 satisfying (A.49). Apply PElab-Postfix to (A.47)
to get

𝑝
𝑠
𝑞 ⇐ 𝜌?0𝑡0[⌈𝑟?𝑖⌉ 𝑡𝑖]0<𝑖≤ℓ (A.51)

where we write

⌈𝑟?𝑖⌉ ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜌?𝑖 if 0 < 𝑖 ≤ 𝑘
●�𝑟𝑖� if 𝑘 < 𝑖 and 𝑟?𝑖 = ●𝑟𝑖
○ if 𝑟?𝑖 = ○

(A.52)

Picking [𝜌?𝑖 = ⌈𝑟?𝑖⌉]𝑘<𝑖≤ℓ+1 gives us our goal (A.49).

• Suppose 𝑠𝜏 = 𝑠 . Pick 𝑝 =𝑚 and 𝑞 = �, i.e. 𝜎𝜏 = 𝑚
𝑠
� = 𝑝

𝑠
𝑞 , which satisfies (A.48).

It remains to construct slots [𝜌?𝑖]𝑘<𝑖≤ℓ+1 satisfying (A.49). We have 𝑚
𝑠
� = 𝜎𝜏 ◃∗ 𝜌0 = 𝑝0𝑠

𝑞0 .
By Lemma 10, we have 𝑚 ≼𝑠 𝑝0. We have 𝑟?0 = ●𝑠 which implies 𝜌?0 = ●𝑛𝐿𝑠𝑛𝑅 for some
𝑛𝐿, 𝑛𝑅 . We have 𝑝0𝑠

𝑞0 ⇒ 𝑛𝐿𝑠
𝑛𝑅𝑡0... by (A.34)—case analysis on the underlying reduction (either

PElab-Postfix or PElab-Infix) tells us that 𝑛𝑅 = 𝑛. By Lemma 10, we have 𝑝0 ≼𝑠 𝑛𝐿 ≺𝑠 𝑛𝑅 .
Inverting (A.34) gives us 𝑛𝑅 = 𝑛. Therefore𝑚 ≼𝑠 𝑝0 ≼𝑠 𝑛𝐿 ≺𝑠 𝑛𝑅 = 𝑛.
We have𝑚 ≺𝑠 𝑛 and that the rightmost symbol of the derived string in (A.47) is 𝑡ℓ , so apply
PElab-Postfix to (A.47) to get

𝑝
𝑠
𝑞 ⇐ 𝑝

𝑠
𝑛
𝑡0[⌈𝑟?𝑖⌉ 𝑡𝑖]0<𝑖≤ℓ (A.53)

where ⌈𝑟?𝑖⌉ is defined as in (A.52). The same reasoning applied in the case 𝑠𝜏 ≠ 𝑠 from (A.51)
onward gives us our goal (A.49).

A.5 Proof of Lemma 2
Lemma 17 (Fill Produces Well-Formed Terms). If R? Ä [𝜎?𝑖]1≤𝑖≤𝑘 = [S?𝑖]1≤𝑖≤𝑘 then
[𝜎?𝑖 ⇛ S?𝑖]1≤𝑖≤𝑘 .

Proof of Lemma 2 (Pushing is Sound and Total). Corollary of Lemma 18 (Generalized Push Total-
ity), generalized to support proof by induction over recursive Reduce steps.

Lemma 18 (Generalized Push Totality). For every stack K, reduction sequence R, and token 𝜏 such
that K←Ð

R
◻ wf, there exists K′ such that K←Ð

R
𝜏 = K′ and K′ wf.

104

S nat Term S is natural

Natural

0 ≼𝑠 𝑝 𝑝
𝑠
𝑞 ⇚ S 𝑞 ≽𝑠 0
S nat

K←Ð
R
◻ wf Stack configuration K←Ð

R
◻ is well-formed

WFConfig (𝑘 ≥ 0)
K wf hd(K) ◽ 𝜎? [R𝑖]0≤𝑖≤𝑘 Ä 𝜎? = S? [R𝑖 nat]0≤𝑖≤𝑘

K←ÐÐÐÐÐÐ
[R𝑖]0≤𝑖≤𝑘

◻ wf

Figure A.1: Push invariant

Proof. Proceed by strong induction on the stack K.

• Suppose K is empty, i.e. K = *.
First, we will show that we can apply Shift, i.e. there exist nonterminals [𝜌𝑖]0≤𝑖≤𝑘 , tokens
[𝜏𝑖]0≤𝑖≤𝑘 , and cells [S?𝑖]0≤𝑖≤𝑘 such that

*[t𝜌?𝑖 𝜏𝑖]0≤𝑖≤𝑘 = 𝜏 (A.54)

RÄ [𝜌?𝑖]0≤𝑖≤𝑘 = [S?𝑖]0≤𝑖≤𝑘 (A.55)

Proceed by case analysis on 𝜏 :

– First suppose 𝜏 = (. Goal (A.54) is satisfied by the fact that * ≐
●�𝑠�

(. It remains to show

there exist cells S? such that RÄ ●�𝑠� = S?. Inverting the premise * ←Ð
R
◻wf, there exists

slot 𝜌? and cells S? such that

* ◽ 𝜌? (A.56)
RÄ 𝜌? = S? (A.57)

Given (A.56), we further have

𝜌? = ●�𝑠� (A.58)

with which rewriting (A.57) gives us (A.55).
– Otherwise, suppose 𝜏 = 𝑡 for some tile 𝑡 . Let R = [R𝑖]0<𝑖≤𝑘 for some 𝑘 ≥ 0.

Lemma 8 gives us tiles [𝑡𝑖]0≤𝑖≤ℓ and slots [𝜎?𝑖]0≤𝑖≤ℓ such that

𝑠 ⋖𝜎?0 𝑡0[≐𝜎?𝑖 𝑡𝑖]1≤𝑖≤ℓ = 𝑡 (A.59)

105

We can further show that

* ⋖○ 𝑠[≐
●0𝑠0

𝑠]
0≤𝑖≤𝑘

(A.60)

given that *◽�𝑠� and �𝑠�⇐ 𝑠[0𝑠0 𝑠]
0≤𝑖≤𝑘 by rule GInj-Prefix. Composing (A.60) with

(A.59) gives us (A.54).
To show (A.55), it suffices to show there exist cells [S?𝑖]0<𝑖≤𝑘 such that

[R𝑖 Ä ●0𝑠0 = S?𝑖]0<𝑖≤𝑘 (A.61)

which can be shown using reduction naturality.

Given (A.54) and (A.55), rule Shift gives us

* ←Ð
R

𝜏 = *[tS?𝑖 𝜏𝑖]0≤𝑖≤𝑘 (A.62)

It remains to show

*[tS?𝑖 𝜏𝑖]0≤𝑖≤𝑘 wf (A.63)

Lemma 17 (Fill Produces Well-Formed Terms) applied to (A.55) gives us

[𝜎?𝑖 ⇛ S?𝑖]0≤𝑖≤𝑘 (A.64)

Using (A.54) and (A.64) and * wf (given by WFStack-Empty), apply rule WFStack-Cons 𝑘 + 1
times in succession to get (A.63).

• Otherwise, assume K is nonempty and the inductive hypothesis that, for any substack K0 of
K and reductions S0 such that K0 ←Ð

R0

◻ wf there exists K′ such that K0 ←Ð
S0

𝜏 = K′ and K′ wf.

Inverting the premise K←Ð
R
◻ wf, there exists slot 𝜎? and cells S? such that

K wf (A.65)
hd(K) ◽ 𝜌? (A.66)

RÄ 𝜌? = S? (A.67)

Since K is nonempty, Lemma 5 (Start Matches End) implies there exist tokens [𝜏𝑖]0≤𝑖≤𝑘 and
cells [R?𝑖]0≤𝑖≤𝑘 and stack K0 such that

K = K0 ⋖R?0 𝜏0 [≐R?𝑖 𝜏𝑖]1≤𝑖≤𝑘

106

for some 𝑘 ≥ 0. Starting with (A.65), invert rule WFStack-Cons 𝑘 + 1 times to get

K0 wf (A.68)

hd(K0) ⋖𝜌?0 𝜏0[≐𝜌?𝑖 𝜏𝑖]1≤𝑖≤𝑘 (A.69)

[𝜌?𝑖 ⇛ R?𝑖]0≤𝑖≤𝑘 (A.70)

Lemma 3 (Homogeneity) applied to (A.69) implies either

[𝜏𝑖 = 𝑡𝑖]0≤𝑖≤𝑘 (A.71)

for some tiles [𝑡𝑖]0≤𝑖≤𝑘 or

[𝜏𝑖 = 𝛾𝑠𝑖]0≤𝑖≤𝑘 (A.72)

for some grout [𝛾𝑖]0≤𝑖≤𝑘 and sort 𝑠 .

– Suppose (A.71) holds. We will show that it is possible to apply rule Reduce.
By Lemma 1 (Valid Prefixes) applied to (A.69) and (A.66), there exist nonterminals 𝜎0, 𝜎 ,
slots [𝜌?𝑖]𝑘<𝑖≤ℓ+1, and tiles [𝑡𝑖]𝑘<𝑖≤ℓ for some ℓ ≥ 𝑘 such that

𝜌?𝑘+1 = 𝜌? (A.73)
hd(K0) ◽ 𝜎0⇒∗ 𝜎 ... (A.74)

𝜎 ⇐ 𝜌?0[𝑡𝑖 𝜌?𝑖+1]0≤𝑖≤ℓ (A.75)

To conclude with rule Reduce, given (A.75) and (A.70), it remains to show there exist
cells [R?𝑖]𝑘<𝑖≤ℓ+1 and stack K′ such that

RÄ [𝜌?𝑖]𝑘<𝑖≤ℓ+1 = [R?𝑖]𝑘<𝑖≤ℓ+1 (A.76)
K0 ←ÐÐÐÐÐÐÐÐÐÐÐÐÐ
{R?0[𝑡𝑖 R?𝑖+1]0≤𝑖≤ℓ}

𝜏 = K′ (A.77)

∗ To show (A.76), it suffices by rule Fill-Partition to show there exists a partition
R = [R𝑖]𝑘<𝑖≤ℓ+1 and cells [R?𝑖]𝑘<𝑖≤ℓ+1 such that

[R𝑖 Ä 𝜌?𝑖 = R?𝑖]𝑘<𝑖≤ℓ+1 (A.78)

Pick the partition R = R [⋅]𝑘+1<𝑖≤ℓ+1 and use (A.67) for index 𝑘 + 1 and either rule
Fill-None or Fill-Default for the remaining indices 𝑘 + 1 < 𝑖 ≤ ℓ + 1.

∗ To show (A.77), it suffices by the inductive hypothesis to show

K0 ←ÐÐÐÐÐÐÐÐÐÐÐÐÐ
{R?0[𝑡𝑖 R?𝑖+1]0≤𝑖≤ℓ}

◻ wf (A.79)

Let S = {R?0[𝑡𝑖 R?𝑖+1]0≤𝑖≤ℓ}. Given (A.68) and (A.74), it suffices to show there exists

107

term S0 such that

SÄ ●𝜎0 = ●S0 (A.80)

It suffices by rule Fill-Postfix to show

𝜎0⇛ {S 𝑠} (A.81)

It suffices by rule Produce-Term to show

𝜎0⇒ 𝜎 𝑠 (A.82)

It suffices by rule Produce-Subsume to show

𝜎0⇐ 𝜎 𝑠 (A.83)

Let 𝜎0 = 𝑝0𝑠0
𝑞0 and 𝜎 = 𝑝

𝑠
𝑞 . It suffices by rule GInj-Postfix to show

0
𝑠0

0 ◃∗ 𝜎 (A.84)

By Lemma 13 applied to (A.74), either 𝜎 ∼ 𝑠0 or 𝜎0⇒ 𝜎 𝑠0 .

· Case 𝜎 ∼ 𝑠0, i.e. 𝑠 = 𝑠0: By reduction naturality applied to (A.75), we know 0 ≼𝑠 𝑝
and 𝑞 ≽𝑠 0, so we are done by Produce-Tighten.

· Case 𝜎0 ⇒ 𝜎 𝑠0 : Invert rule Produce-Subsume to get 𝜎0 ⇐ 𝜎 𝑠0 . Invert rule
GInj-Postfix in turn to conclude.

– Suppose (A.72) holds. It suffices by rule Degrout to show there exists K′ such that

K0 ←ÐÐÐÐÐÐÐÐ
[R?𝑖]0≤𝑖≤𝑘 R

𝜏 = K′ (A.85)

It suffices by our inductive hypothesis to show

K0 ←ÐÐÐÐÐÐÐÐ
[R?𝑖]0≤𝑖≤𝑘 R

◻ wf (A.86)

That is, by WFConfig, to show

K0 wf (A.87)
hd(K0) ◽ 𝜎0? (A.88)

[R?𝑖]0≤𝑖≤𝑘 RÄ 𝜎?0 = S?0 (A.89)
[R?𝑖]0≤𝑖≤𝑘 R nat (A.90)

For some 𝜎?0 and S?0. We already have (A.87) from (A.68). We obtain (A.88) for 𝜎?0 = ●𝜎0
by rule inversion of Prec-LT on hd(K0) ⋖𝜌?0 𝜏0 in (A.69). For (A.89), we apply either
Fill-Default or Fill-Operand, depending on whether [R?𝑖]0≤𝑖≤𝑘 R is empty. The for-

108

mer case is trivial. For the latter case, we use Produce-Tighten. This means we have
to show that 𝜎0 produces a sequence of alternating grout and nonterminals, such that
the nonterminals produce the nonempty entries in [R?𝑖]0≤𝑖≤𝑘 R. We already have the
nonterminals for [R?𝑖]0≤𝑖≤𝑘 ; they are [𝜌?𝑖]0≤𝑖≤𝑘 by (A.70). The sorts for R are the sorts
they synthesize, with 0, 0 bounds, they analyzed against these because they are natural.
Nowwe need to show that𝜎0 actually does produce this form. We obtain this bywidening
to ⊺-⊺ bounds, applying subsumption, then applying GInj-Operand. Now we have to
show that each of the nonterminals mentioned above is accessible from the sort of 𝜎0, and
has non-� bounds. We obtain non-� bounds for the first set, [𝜌?𝑖]0≤𝑖≤𝑘 , by rule inversion
on the fact that they appear next to grout in (A.69). The second set was constructed to
have 0 bounds, which are not �. We have accessibility from the sort of 𝜎0 for [𝜌?𝑖]0≤𝑖≤𝑘
by splicing (A.69). For accessibility of the root sorts of R, we observe that each one
is accessible from 𝜌? by (A.67), which is in turn accessible from the sort of 𝜎0 by the
aforementioned splice.
This completes the slot filling obligation. The final obligation is to shownaturality, (A.90).
We already have R nat by assuming the original stack configuration is well-formed. For
[𝜌?𝑖]0≤𝑖≤𝑘 , we rely on the fact that the bounds for each [𝜌?𝑖]0≤𝑖≤𝑘 is non-�, since they
appear next to grout.

109

Appendix B

tall tylr Performance

We performed some simple benchmarks to test tall tylr’s parsing and insertion edit perfor-
mance.
B.0.1 Left-to-right parsing performance setup
For the purposes of judging parsing performance with respect to program length, we approxi-
mated a naturalistic code example by assembling a base program of 100 lines consisting of all
examples from our user study (§5.5), expressed as definitions with a trailing hole. For each trial,
we concatenated as many copies of that program as necessary to hit the line total, and then trun-
cated the result to the desired line length. This creates a program which is syntactically correct
and complete modulo trailing obligations. This program is then parsed, by splitting into tokens
and performing insertion actions for each token, measuring the total time for all insertions.

(The base program consists of 100 lines, 2233 chars, and 1270 tokens, resulting in an average
of 12.7 tokens and 22.3 characters per line).

B.0.2 Left-to-right parsing performance results
Parsing results are shown in Fig. B.1. Performance is currently quadratic in (realistic) program
length owing to the fact that each let definition imposes an additional level of nesting. We are
considering a specific optimization for top-level definition forms in the future to make this linear.

B.0.3 Insertion action performance setup
Taking the base 100-line program from the above task, we deleted 20 single-token terms dis-
tributed randomly over the program, leaving 20 operand obligations. For each resulting obliga-
tion, we measured the time taken to insert a single character token into the hole, repeating each
such insertion 200 times to increase precision.

For each operand obligation, we derived the syntactic nesting depth (number of containing
forms) and the total length of the operand sequence (prefix plus suffix) in which the hole is con-
tained, and plotted these versus the time taken per insertion.

B.0.4 Insertion action performance results

110

Figure B.1: Time taken to parse syntactically correct and prefix-complete programs across a range of program
lengths

Figure B.2: Time taken to perform 200 single-
character token insertions in an operand hole of the
specified depth

Figure B.3: Time taken to perform 200 single-
character token insertions in an operand hole of the
specified operand sequence length

111

Appendix C

Additional Data for §5.5

C.1 More Scenarios

Figure C.1: A participant has stubbed the header for a helper function, and is about to cut some relevant code to
paste in the helper. However, they left the in delimiter belonging to the helper stub as a ghost, and incidentally
omitted an in from their selection. On cut, that latter in becomes an orphan, which is then matched to the ghost
in. This has the effect of shunting the existing function literal into the body of the helper.

C.1.1 Spooky action-at-a-distance due to unattended ghosts
Ghost cleanup logic can trigger non-local effects which can be hard to anticipate when the ghost
is not directly involved in the current edit. Fig. C.1 illustrates an example from Task 4, where the
participant was confused that their cut action seemingly sucked the function literal into the body
of the definition, taking them further from their goal.

Figure C.2: During Task 6, participants had to push an if expression deeper into a function, which they typically
approached by cutting the segment highlighted in yellow. This cut leaves behind an unmolded red ’else’ delimiter
and an infix obligation. Since infix obligations are assigned the loosest precedence, the function literal taking square
as an argument is now entirely on the left side of the grout, and the expression on the last line of the program is no
longer inside that function literal, resulting in a subtle but substantial change to the program structure.

112

C.1.2 Infix obligations and unexpected shifts in structure
While participants seemed to accept the notion of infix obligations as missing infix operators,
their sudden appearance during the deletion of compound syntactic forms like definitions and
conditionals lead to subtle and surprising situations. One of these is illustrated in Fig. C.2. Many
participants did not notice the infix obligation in such situations, pushing on with their planned
edits, but for those that did this was a source of confusion. Participant P6 notes: "What I expected
to be the case is that this piece of grout is a binary operator on this rect and this list in the body
of this let. But that’s not even true."

C.2 More Participant Reactions
P2: "It’s feeling pretty good. [...] I don’t know if I’m just like not thinking of a lot of
stuff right now, or if that was just so smooth that it doesn’t give me a lot of thoughts"

P3: "It takes probably takes more time to develop an intuition behind when to use
tylr powers [...] in particular, when use space and start to type something"

P9: "It was always clear visually if the editor was on the same page as me."

P2: "It’s feeling pretty good. [...] I don’t know if I’m just like not thinking of a lot of
stuff right now, or if that was just so smooth that it doesn’t give me a lot of thoughts"

P4: "The grout and ghosts, when they worked, felt pretty seamless"

P8: "I always would like placeholder completions until I have a complete expression!
They allow me to scaffold until I have a complete expression of code."

P2: "I don’t have to remember the syntax of the language as much, I just have to
remember how to write the first token in a term."

This was particularly felt when the obligations were inserted in the middle of a complex edit:

P5: "The editor sometimes added a lot of holes [...] while I was in the middle of
editing an expression, which I instinctively tried to delete."

P7: "I was actually surprised. I thought it was going to break. But then it worked.
So, I’m pleasantly surprised, I’ll say for that one."

P4: "So the the fact that these ghosts and grout are in my way and I can’t get rid of
them is super annoying."

P3: "It takes probably takes more time to develop an intuition behind when to use
tylr powers [...] in particular, when use space and start to type something"

113

	Acknowledgements
	Table of Contents
	List of Figures
	List of Appendices
	Abstract
	Introduction
	Motivation
	Contributions

	Background and Related Work
	Structure Editing
	Parsing

	tiny tylr: A Tiny Tile-Based Editor
	Contributions
	Design Overview
	Evaluation
	Future Work

	teen tylr: Gradual Structure Editing with Obligations
	Contributions
	Design Overview
	Lab Study
	Results
	Discussion

	tall tylr: Syntactic Completions with Material Obligations
	Contributions
	Design Overview
	meldr
	From meldr to tall tylr
	User Study
	Conclusion

	Concluding Remarks
	Bibliography
	Appendices
	Proofs for §5.3
	Precedence Comparisons
	Precedence Bounds
	Proof of Theorem 1
	Proof of Lemma 1 (Valid Prefixes)
	Proof of Lemma 2

	tall tylr Performance
	Additional Data for §5.5
	More Scenarios
	More Participant Reactions

